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* Number of connected devices keeps growing every year
® Very large capacity requirements

¢ How to achieve larger system capacity?
® Beamforming gain — Massive MIMO

® |Increase bandwidth — Millimeter wave bands
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Motivation and Scope

Challenges

1. Computational complexity of large-scale filter design;
2. Energy efficiency of mmWave massive MIMO transceivers;
3. MmWave channel estimation under synchronization impairments.
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State of the Art — Problem 1

lterative implementation of linear filters

* P. Harris et al., “Serving 22 users in real-time with a 128-antenna
massive MIMO testbed.” 2016 IEEE International Workshop on
Signal Processing Systems (SiPS), p. 266-272.

® Systolic array implementation of QR decomposition for
Zero-Forcing filtering
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State of the Art — Problem 1

lterative implementation of linear filters

* P. Harris et al., “Serving 22 users in real-time with a 128-antenna
massive MIMO testbed.” 2016 IEEE International Workshop on
Signal Processing Systems (SiPS), p. 266-272.

® Systolic array implementation of QR decomposition for
Zero-Forcing filtering

e X. Qin et al., “A near-optimal detection scheme based on joint
steepest descent and Jacobi method for uplink massive MIMO
systems,” |IEEE Communications Letters, v. 20, n. 2, p. 276-279,
2015.

® Joint steepest descent and Jacobi method detection
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State of the Art — Problem 2

Hybrid analog/digital (A/D) systems

O. El Ayach et al., “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Transactions on Wireless Communications, v.
13, n. 3, p. 1499-1513, 2014.
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State of the Art — Problem 2

Hybrid analog/digital (A/D) systems

O. El Ayach et al., “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Transactions on Wireless Communications, v.
13, n. 3, p. 1499-1513, 2014.

Digital systems with low-resolution data converters

K. Roth et al., “A comparison of hybrid beamforming and digital
beamforming with low-resolution ADCs for multiple users and
imperfect CSI,” IEEE Journal of Selected Topics in Signal Processing,
v. 12, n. 3, p. 484-498, 2018.
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State of the Art — Problem 3

MmWave channel estimation with carrier frequency offset
(CFO) impairment
* N. J. Myers and R. W. Heath Jr., “Message passing-based joint
CFO and channel estimation in mmWave systems with one-bit

ADCs,” IEEE Transactions on Wireless Communications, v. 18,
n. 6, June 2019.

® Sparse bilinear optimization — message passing solution
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State of the Art — Problem 3

MmWave channel estimation with carrier frequency offset
(CFO) impairment
* N. J. Myers and R. W. Heath Jr., “Message passing-based joint
CFO and channel estimation in mmWave systems with one-bit

ADCs,” IEEE Transactions on Wireless Communications, v. 18,
n. 6, June 2019.

® Sparse bilinear optimization — message passing solution

¢ J. Rodriguez-Fernandez and N. Gonzalez-Prelcic, “Channel
estimation for hybrid mmWave MIMO systems with CFO
uncertainties,” to appear in IEEE Transactions on Wireless
Communications, 2019

® Maximum likelihood estimator
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Part I: Multilinear Filtering

Related publications

® |ET Signal Processing, v. 13, n. 4, p. 434—-442, June 2019
® Signal Processing, v. 158, p. 15-25, May 2019
® Proc. SBRT 2018

® Proc. IEEE ISWCS 2019
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Multilinear Filtering

Multi-linear and time-invariant filter:
w=w ® - @wy €CN

where w,, € CV» with [[Y_, N,, = N

¢ Basic idea: design each factor instead of the whole vector

Fewer computations?

How much performance loss, if any?

e Beamforming and equalization problems

7153



Multilinear Filtering

)

Multilinear Filtering

Tensor approach Sub-array approach
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Multilinear Filtering

)

Multilinear Filtering

——

Tensor approach

Sub-array approach

‘ TMMSE [ TLCMV [ KMMSE I KLCMV }

Scenario

¢ Narrowband far-field propagation

* R independent sources s, [k] impinging on the receiver with N

antennas

* Multi-user system with R users and line-of-sight propagation
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System Model

Received Signal

x[k] = As|k] + b[k] (1)
® sk] = [s1]K],...,sgr[k]]" € CF —sources vector
* A=la(¢1,6h),...,a(pr,0r)] € CV*E —array manifold matrix

® blk] = [bi[k],...,bn[k]]" € CN —ad. white Gaus. noise (AWGN)
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System Model

Received Signal

x[k] = As|k] + b[k] (1)
® sk] = [s1]K],...,sgr[k]]" € CF —sources vector
* A=la(¢1,6h),...,a(pr,0r)] € CV*E —array manifold matrix

® blk] = [bi[k],...,bn[k]]" € CN —ad. white Gaus. noise (AWGN)

Beamforming Filter
¢ Filter x[k] to recover a signal of interest (r = 1)

® w=[wy,... ,wy]l €CVN

o Filter output:
ylk] = w'z[k]

9/53



Uniform Planar Array
UPA array response is separable

1 1
e—Jmcos Op e—Jm sin ¢ sin 0

a(ér, 0r) = . ®
z 7-th wavefront o—im(Ny—1) cos Oy o= Jdm(Np, —1) sin ¢ sin 6y

=ay(qr) ® ap (pr)

where p, = sin ¢,.sin 6, and ¢,, = cos 6.

I\ 1nit ball
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Uniform Planar Array
UPA array response is separable

1 1
e—Jmcos Op e—Jm sin ¢ sin 0

a(ér, 0r) = . ®
z 7-th wavefront —§m(Ny—1) cos 0. o= Jdm(Np, —1) sin ¢ sin 6y

=ay(qr) ® ap (pr)

where p, = sin ¢,.sin 6, and ¢,, = cos 6.

Array manifold matrix:

A= Av <>Ah c CNthXR

5 it ball
Apply separable filter w = w, ® w;, to
each array dimension

(wq, ®wh)H (AUOA;L) = (w:qu,) ® (w}'jAh)
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System Model — Tensor Formulation
¢ We define the array steering tensor

A:I&R X1 Ah XQAD XgIRE(CN”XN”XR (2)
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X[k] = A x3s'[k] + B[k] € CNexNo (3)

® Filter w = w = w, ® w;, output:
ylk] = whak] = X[k] x1 wj x2 wl (4)

= wj X [klw} = wy/ X" [k]w}, ()
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System Model — Tensor Formulation
¢ We define the array steering tensor

A:I&R X1 Ah XQA’U XgIRG(CN“XN”XR (2)

Received signal model
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System Model — Tensor Formulation
¢ We define the array steering tensor

.A:I&R X1 Ah XQAU XgIRE(CN“XN”XR (2)

Received signal model
X[k] = A x3s'[k] + B[k] € CNexNo (3)

Filter w = w = w, ® w;, output:
ylk] = whz[k] = X[k] x1 wj x5 w} (4)
= wj X [kJw} = w! X T [k]w}, (5)

Define uy,[k] = X [k]w} € CMr and u,[k] = X T[k]w} € CN>
¢ Qutput signal rewritten as
ylk] = wilunlk] = wiu, k] (6)

Output bilinear w.r.t. sub-filters e



Beamforming Filter Design — Tensor MMSE (TMMSE)

. cCj)or]sider the classical minimum mean square error (MMSE) filter
esign:

min E USSOM — whalK] ﬂ ™)
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. cCj)or]sider the classical minimum mean square error (MMSE) filter
esign:

min E USSOM — whalK] ﬂ ™)

* From the bilinearity property, we may write

If.lul,flE USSOI[M —whuy [k]ﬂ (8a)
in® [ssorfi] - w!u, ] (8)

¢ Alternating optimization in (8a) and (8b) until convergence

e After convergence': wrynvse = w, @ wy,

L A. Yener, R. D. Yates, S. Ulukus, “Interference management for COMA systems
through power control, multiuser detection, and beamforming,” |IEEE Transactions on

Communications, v. 49, n. 7, p. 1227-1239, 2001.
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* From the bilinearity property, we may write

If.lul,flE USSOI[M —whuy [k]ﬂ (8a)
in® [ssorfi] - w!u, ] (8)

¢ Alternating optimization in (8a) and (8b) until convergence
e After convergence': wrynvse = w, @ wy,

¢ Tikhonov regularization is applied to avoid numerical instability
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Beamforming Filter Design — Tensor MMSE (TMMSE)

. (Cj)or]sider the classical minimum mean square error (MMSE) filter
esign:

min E [\5501[1«1 — whalK] ﬂ ™)

From the bilinearity property, we may write

If.lul,flE USSOI[M —whuy [k]ﬂ (8a)
in® [ssorfi] - w!u, ] (8)

Alternating optimization in (8a) and (8b) until convergence

After convergence!: wrymse = w, ® wy,

Tikhonov regularization is applied to avoid numerical instability

Exchange degrees of freedom for complexity reduction

L A. Yener, R. D. Yates, S. Ulukus, “Interference management for COMA systems
through power control, multiuser detection, and beamforming,” |IEEE Transactions on

Communications, v. 49, n. 7, p. 1227-1239, 2001.
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Beamforming Filter Design — Tensor MMSE (TMMSE)

. (Cj)or]sider the classical minimum mean square error (MMSE) filter
esign:

min E [\5501[1«1 — whalK] ﬂ ™)

From the bilinearity property, we may write

If.lul,flE USSOI[M —whuy [k]ﬂ (8a)
in® [ssorfi] - w!u, ] (8)

Alternating optimization in (8a) and (8b) until convergence

After convergence!: wrymse = w, ® wy,

Tikhonov regularization is applied to avoid numerical instability
* Exchange degrees of freedom for complexity reduction

® N (linear) vs. min(Ny, N,) (tensor)
L A. Yener, R. D. Yates, S. Ulukus, “Interference management for COMA systems
through power control, multiuser detection, and beamforming,” |IEEE Transactions on
Communications, v. 49, n. 7, p. 1227-1239, 2001.
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Beamforming Filter Design — Tensor LCMV (TLCMV)

* We also consider the linear constraint minimum variance (LCMV)
filter

minw' R, w, st. Clw=f (9)

where C € CV*E denotes the constraint matrix, f € C* the
array factor vector and R, the cov. matrix of x[k]
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Beamforming Filter Design — Tensor LCMV (TLCMV)

* We also consider the linear constraint minimum variance (LCMV)
filter

minw' R, w, st. Clw=f (9)

where C € CV*E denotes the constraint matrix, f € C* the
array factor vector and R, the cov. matrix of x[k]

¢ We can decouple (9) into

min wZ'thwh, s.t. C’,t'wh = fh (103.)
Wh
minw! R, w,, st. Clw, = f, (10b)

¢ Apply alternating optimization to (10) until convergence
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System Model — Sub-array Formulation

® Linear sub-arrays in planar array
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System Model — Sub-array Formulation

® Linear sub-arrays in planar array

® Horizontal sub-array

xp,[k] = Aps[k] + b[k] € CNe (11)

e Vertical sub-array

x,[k] = A,s[k] +b,[k] € CN (12)

® |dea: design w;, and w,
independently

e Capture sub-array signals only

e Obtain full beamformer by
w = w, wy

14/53



Beamforming Filter Design — Kronecker Filters

Kronecker MMSE (KMMSE) Filter

r{lulglE USSOI[kJ] - wgwh[k]lz} (13a)

minE [|3501[k] — wha, [k] ﬂ (13b)
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Beamforming Filter Design — Kronecker Filters

Kronecker MMSE (KMMSE) Filter

r{lulglIE USSOI[]C] - wgwh[k]lz} (13a)

minE [|3501[k] — wha, [k] ﬂ (13b)

Kronecker LCMV (KLCMV) Filter

minw,';'Rhwh, s.t. C,':'wh =fn (14a)
wy,

minwﬂvav, s.t. Cq'j’wv =fu (14Db)

where R;, and R, are the covariance matrices of x[k] and z, [k],
respectively
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Beamforming Filter Design — Kronecker Filters

Kronecker MMSE (KMMSE) Filter

r{lulglIE USSOI[]C] - wgwh[k]lz} (13a)

minE [|3501[k] — wha, [k] ﬂ (13b)

Kronecker LCMV (KLCMV) Filter

minw,';'Rhwh, s.t. C,':'wh =fn (14a)
wy,

minwﬂvav, s.t. Cq'j’wv =fu (14Db)

where R;, and R, are the covariance matrices of x[k] and z, [k],
respectively

Compute wy,, w, and combine with Kronecker once!
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Beamforming Filter Design

Computational Complexity
e MMSE/LCMV: O(N?)
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Beamforming Filter Design

Computational Complexity
e MMSE/LCMV: O(N?)

TMMSE/TLCMV: O(I(N} + N2)), for I iterations
KMMSE/KLCMV: O(N? + N3)

The MMSE and LCMV filters (as well as their tensor extensions)
depend on second-order statistics

¢ Sample estimates when they are not known

The adaptive implementation of the proposed tensor and
Kronecker MMSE and LCMYV filters have been developed

16/53



Simulation Results

Setup

¢ Direction cosines p, and ¢, uniformly distributed in ¢/(—0.9, 0.9)
® R = 4 sources QPSK signals

e N = 64 antennas (N, = N, = 8), half-wave spacing
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Simulation Results

Setup

¢ Direction cosines p, and ¢, uniformly distributed in ¢/(—0.9, 0.9)
® R = 4 sources QPSK signals

e N = 64 antennas (N, = N, = 8), half-wave spacing

Figures of Merit
¢ Floating point operations (flops) — computational complexity
¢ Uncoded bit error ratio (BER) for MMSE-type filters
¢ Qutput SINR for LCMV-type filters

wHRddw

SINRout = R R, + R
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Simulation Results — Computational Complexity
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Simulation Results — BER and SINR

100 E T - T = 40 T T
= —o— MMSE LCMV
1071 L TMMSE i TLCMV
E KMMSE || —_ KLCMV
-2k (6=0.5) || [ 30F 2
<
m |- -
w 1073 = %)
@ g : 5 20 8
B 1 o
= E =}
i : ©
1()475 g E 1() [ T
10-6 L | | | ] | |
—20 -10 0 10 20 —10 0 10
SNR [dB] SNR [dB]

20

19/53



Simulation Results — BER and SINR

100 g : ; 40 ]
= —o— MMSE LCMV
1071 L —=— TMMSE ! TLCMV
KMMSE || — KLCMV
-2 L (6=05) | [ 30F |
-
m |-
w1077 ¢ n
F 5 20 |- =
[ o
107" 4 3
g 1 ©
10~° ? ) 10 |- l
10-6 L | | | ] | |
—20 -10 0 10 20 —10 0 10
SNR [dB] SNR [dB]

20

19/53



Simulation Results — BER and SINR

100 g : ; 40 ]
—o— MMSE LCMV
1071 L —=— TMMSE TLCMV
KMMSE || — KLCMV
-2 L (6=05) | [ 30F |
-
m |-
w1077 ¢ n
F 5 20 |- =
[ o
107" 4 3
g 1 ©
10~° ? ) 10 |- l
10-6 L | | | ] | |
—20 -—10 0 10 20 —10 0 10
SNR [dB] SNR [dB]

20

19/53



Simulation Results — BER and SINR

100 g : : 40 I
—— MMSE || ——LCMV
10-1E ——TMMSE || TLCMV
KMMSE || — KLCMV
10-2 L (6=05) | g 30 .
| g
m |-
ul 1073 £ n
F 5 20 + .
[ o
107" 4 3
g 1 ©
10° 8 ) 10 |- N
10-6 L | | | ] | |
—-20 —-10 O 10 20 —10 0 10 20
SNR [dB] SNR [dB]

19/53



Simulation Results — BER and SINR

100 ¢ : : 40 ‘
—— MMSE || ——LCMV
10-1E ——TMMSE || - - - TLCMV ,
E KMMSE || . KLCMV e
10-2 1 6=05 | F 307 S
] o
D: [~ v
107 @
E 5 20 - K .
B 3 )
1074 E 5
f 1 O /
1075 ? g e //_/ |
10-6 L | | | ] i | |
—20 —-10 0 10 20 —10 0 10 20
SNR [dB] SNR [dB]

19/53



Simulation Results — BER and SINR

100 ¢ : : 40 ‘
—o— MMSE || —— LCMV
10-1E —=— TMMSE - - -TLCMV o
g KMMSE | = -~ KLCMV /
10-2 ; (6 =0.5) S, 30 |- /// N
E o /
103 | S ’
= n 4
m F "5' 20 [~ /// 1
& 3 p
1074 & e 5 o
= ] (@] //
1075 & ¢ e i
E i oy
10-6 L | | | ] | |
—20 -—10 0 10 20 —10 0 10 20
SNR [dB] SNR [dB]

19/53



What about non-separable channels?
Multipath?



What about non-separable channels?
Multipath?

Low-Rank Filters



What about non-separable channels?
Multipath?

Low-Rank Filters



System Model

e Uplink scenario, U users

U
xlk] =Y H,su[k] + b[k] (15)

sulk] = [sulk], . .., sulk —Q+1]]" (16)
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System Model

e Uplink scenario, U users

e Channel model

L

Hu = Zau,fa'(eu,f)g('ru,[)—r € (CNXQ
(=1

]
) = [ -] g

g(Tu,€> = [g(fTu,Z)v s 79((Q - 1)T - Tu,@)]T € (CQ

® H, is not separable, but admits a low-rank structure

¢ Low-rank equalizer to filter the desired data stream s, [£]
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Some Algebra...

The filter coefficients can be written as

r=1d=1

which allows us to recast the equalizer output y[k] = wHz[k] as
follows

yk]

11111

Il
z
gt
S
O
[]=
g
2.
3
g
S
=
3 *
v}
~
8
3
3
v}
=
~
L

77777

Il
M=
Wk
g
EE

o~
M=
Mo
&
5
3
i;g
S
=
N————
™
RS

r=1ng=1 ng=1q#d
R Ng

=D [warln, far K, = whualk] (21c)
r=1ng=1

Output is linear w.r.t. each tensor filter factor w,!
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Low-Rank Tensor MMSE

¢ We formulate for each filter mode

min E [|s,[k — 6] — wiug[k]?], de{1,...,D}.
wq

where
-
uglk] = [ugl[k] udTR[k]] € ChN (22)
Uq, r X(d) ® wq r € CNa (23)
q#d
wy = [w),,...,w} 5] € ChNa (24)
e Solution:
wymmse = R, ), Pu, € CHY4, (25)
Ry, = E [uq[k]ulj[k]] € CHNaxBENa, (26)
Pu, = E [ug[k]s:[k — §]] € CNa (27)

¢ Alternating optimization
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e N: number of antennas
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cov. matrix inversion
2 3 2
Puvse(N,K)= N“K+ NK + O(N?) + N
statistics estimation filtering
¢ | R-TMMSE filter

PRrtwmse({Na}, D, I, K) =

cov. matrix inversion
——

D
> R(D-1)NK+ N;K+NgK+  O(N3) + N;
d=1

~—~
statistics estimation filtering
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Computational Complexity

e N: number of antennas

¢ K: number of snapshots (covariance matrix estimation)

¢ MMSE filter
cov. matrix inversion
2 3 2
Puvse(N,K)= N“K+ NK + O(N?) + N
statistics estimation filtering
¢ | R-TMMSE filter

PRrtwmse({Na}, D, I, K) =

cov. matrix inversion
——

D
> R(D-1)NK+ N;K+NgK+  O(N3) + N;
_ ~~
d=1 statistics estimation filtering

e [: iterations number

* Tensor overhead!
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Part II: MmWave Massive MIMO Transceiver
Design

Related publications

® |EEE Journal of Selected Topics in Signal Processing, v. 12, n. 2, p. 298-312,
May, 2018;

® |EEE Access (under revision)
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® | ow-res. data converters — pow. amps. close to saturation
(more efficient)
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¢ Definition of the quantized hybrid precoding problem

* Assessment of performance losses due to hardware and
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® Presentation of novel hybrid A/D precoding techniques
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Signal Model

¢ Single-user mmWave MIMO system with N,. x N; antennas
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Signal Model

¢ Single-user mmWave MIMO system with N,. x N; antennas

* Received signal:
y=Hz+ncCV (29)

¢ Transmitted signal with DAC and RF losses:

& e CNe, (30)

1 1
* = ———FRrrQy(FBBS
T b(FBBS) = T

Lgr RF losses, L; TX RF chains, Frr € CNt*Lt and
Fyg € CH+*Ns analog and baseband precoders, resp.

¢ Channel model
L
H = /%23 aja, (67,607) ar ()", eéﬂ)H € CN-x e,
=1
(31)
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Quantized Signal Model

® Proposed quantized signal model

1 1
Y~ \/THFH’u +ng = \/?RFHequFBBs +ng.  (32)
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Quantized Signal Model

® Proposed quantized signal model

1
H'u+ng = ———=He Y, Fags + ne. (32)

1
y=
V' Lgr vV Lrr

where
— H' = Heq Y, € CV7*M gtands for channel + DAC distortion matrix

— Heq = HFgr € CN*M denotes the equivalent channel
— Y = /1 — ppIu is the DAC distortion matrix
— u = Fggs € CM baseband-precoded signal
— ng additive noise
¢ Covariance matrix of n¢ is given by
Ryong = 1= HeqRee Hg + Ry € CV7 7N (33)
R.. = pydiag(Ru,) € CMM (34)

¢ Noise covariance matrix depends on the input signal (causality
problem?)

¢ Colored noise — whitening filter
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Quantized Precoding Problem
Problem Formulation
Assuming perfect channel state information (CSI) and whitening:

maingize  log, det (T, + *£22 Rl H Far Fos Fip Fi HY Ry i)

subject to [FF{F]u,U € Frr, YuVou, E [”:f:”%] < Pmax-

(35)

where £ = FreYu + Frre € CN
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Quantized Precoding Problem

Problem Formulation
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Quantized Precoding Problem
Problem Formulation
Assuming perfect channel state information (CSI) and whitening:

npl‘g)’:(ir%iBzBe log, det (INT + 1728 Ry, 2 H Frp Fap F i HY R,:é/fé”)

subject to [FF{F]u,U € Frr, YuVou, E [”:f:”%] < Pmax-

(35)

where £ = FreYu + Frre € CN

¢ |tis general to model the (un)quantized hybrid and fully-digital
precoding problems

¢ Sub-optimal solution: optimize Frr and Fgg independently

Analog Precoder Frg Design
¢ Fully-connected: alternating projection method?

¢ Partially-connected: maximum eigenmode transmission by
power method

2J.A Tropp et al, “Designing structured tight frames via an alternating projection method,” |EEE Transactions on Information

Theory, v. 51, n. 1, p. 188-209, 2005.
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Quantized Precoding Problem

Baseband Precoder Fgg Design

® Design baseband filter as optimal precoder in infinite-resolution
DAC scenarios

maximize log, det (Iy, + R;,) HeqFoaFip Hgy)
Fgp (36)
subject to  E [||Z]13] < Prax.
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Quantized Precoding Problem

Baseband Precoder Fgg Design

® Design baseband filter as optimal precoder in infinite-resolution
DAC scenarios

maximize log, det (Iy, + R;,) HeqFoaFip Hgy)
Fgp (36)
subject to  E [||Z]13] < Prax.

* Avoids causality problem in total noise covariance matrix
e Consider the SVD of the equivalent channel: Heq = UV

e SVD precoding + waterfilling power allocation:

—_ Pmax
Fas = QT @ 7
Q = VA'/? e M (38)

where A € RVs*¥s denotes the diagonal power allocation matrix.
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Power Consumption and Loss Models

Power Consumption Formulas
e Fully-digital: Pp = P.o + Ppa + N; [QPDAC(bDA07 FS) T PRF}

e Hybrid A/D fully-connected:
Prpsn = Plo + Prea + Li[2Ppac(bpac, Fs) + Pre] + Ny L Prs(bps)

¢ Hybrid A/D partially-connected:
Pppsn = PLo + Pra + L¢[2Poac(bpac, Fs) + Pre] + No Ly Pes(bps)

e Power amplifier: Pea = P, /), for efficiency n and

Py = 1= [(1 = po) || Fre Fisl|3 + Tr(Frr Rec FiE)]
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Power Consumption and Loss Models
Power Consumption Formulas
o FuIIy-dlgltaI Po = P+ Pea+ Ny [QPDAC(bDAC7 FS) + PRF}

e Hybrid A/D fully-connected:
Prpsn = Plo + Prea + Li[2Ppac(bpac, Fs) + Pre] + Ny L Prs(bps)

¢ Hybrid A/D partially-connected:
Pppsn = PLo + Pra + L¢[2Poac(bpac, Fs) + Pre] + No Ly Pes(bps)

e Power amplifier: Pea = P, /), for efficiency n and

Py = 1= [(1 = po) || Fre Fisl|3 + Tr(Frr Rec FiE)]

RF Devices Loss
e 2-way pow. div: LD(Nt) Phase'Shifting Network Loss

C LE‘;SN = Lp(Nt)LpsLc(Ly).
o LPPSN = In(N.)Lps.

e 2-way pow. comb: L¢(L:)

® Phase-shifter (passive or
active): Lps
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Simulation Setup

Phase shifter implementation

* N, =64and N, = 4 antennas * Active: 1 power consumption

e I, — 4 RF chains | insertion loss
e N, = 4 data streams * Passive: | power
consumption 1 insertion loss
* L = 5 channel paths Notation Value
® Prax=1W Pea Py /0, m=27%
Prs 21.6; 0 mW
® Phase shifter resolution: 5 bits Po 22.5 mW
e DAC sampling frequency Py 3mwW
F —1GHz Pu 0.3mW
s Pp 14 mW
* Energy efficiency: Prr 31.6 mW
. Lp 0.6dB
spectral eff|C|enF:y bit/J] Ic 0.6dB + 3dB
power consumption Lpg —2.3:8.8dB
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Simulation Results
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Simulation Results
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Massive MIMO only at transmitter (base station)



Massive MIMO only at transmitter (base station)

Double-Sided Massive MIMO

Transceiver Design



Double-Sided Massive MIMO

e Why?
® Potentially better performance than canonical massive MIMO
* Wireless backhauling, terahertz communications, among others
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Double-Sided Massive MIMO

e Why?
® Potentially better performance than canonical massive MIMO
* Wireless backhauling, terahertz communications, among others

e Contributions

® Low-complexity transceiver schemes with practical CSI
requirements

® Performance evaluation under different propagation conditions
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System Model
Signal and Channel Models
Downlink operation, 1 BS (V; antennas), U UEs (N, antennas, each)

U
Yo = Wi H,Fus, +» W, H,F;s; + Wb, € C"*, (39)

j=1
ju

L
H, = /223 aguar (607,60 al (60, 60)  (40)
=1
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System Model
Signal and Channel Models
Downlink operation, 1 BS (V; antennas), U UEs (N, antennas, each)

U
Yo = Wi H,Fus, +» W, H,F;s; + Wb, € C"*, (39)

j=1
ju

L
H, = /NtLNr Za&uam ( ér,u)7eér,u.)) azu ((bét,u),ezt,u)) (40)
=1

Multi-Layer Filtering
Two layers: outer and inner layers
® F,=v.F,F., Fp, € CN*Mt and ~, F,,, € CMt*Ns
* W, =Wy Wi, Wy, € CN*M-and W, € CMrxN-
Each layer, one objective:
e Quter layer: increase SNR

¢ Inner layer: cancel multi-user interference
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System model
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Signal Model (inner filters and effective channels)
Form low-dimensional effective channels!

P, /U
Heff,u,j = WOHuHuFO,j € CMTXMtv Yu = t/
[ Fo,u B ullp
U
Yu = Yu Wi Hett u FluSu + Z'YjVVizHeff,u,jE,jsj + W et o
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Su
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CSI Acquisition

First Stage: Outer Layer

CSI necessary for outer layer design
e Statistical CSI (uplink and downlink cov. matrices); or

¢ Partial CSl: path power and angles
Depend only on macroscopic channel parameters!
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CSI Acquisition

First Stage: Outer Layer

CSI necessary for outer layer design
e Statistical CSI (uplink and downlink cov. matrices); or

¢ Partial CSl: path power and angles
Depend only on macroscopic channel parameters!

Second Stage: Inner Layer
¢ Estimate low-dimensional effective channels Heg ,,

® Example: classical MMSE estimators

Time Scales
® Macroscopic: update outer layers

® Microscopic: update inner layers (low complexity!)
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Transceiver Schemes

¢ Obtain outer layer filters — increase SNR
® Covariance matrix eigenfilter (CME)

® Power-dominant path selection (PPS)
® Semi-orthogonal path selection (SPS)
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Transceiver Schemes

¢ Obtain outer layer filters — increase SNR
® Covariance matrix eigenfilter (CME)

® Power-dominant path selection (PPS)
® Semi-orthogonal path selection (SPS)

¢ Form inner layer filters — cancel multi-user interference out

® Maximum Eigenmode Transmission (MET) — Maximum Eigenmode
Reception (MER)

* MET-Block diagonalization (BD)
* MET-MMSE
* BD-MER
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Simulation Results — Setup
¢ Investigate multiplexing capabilities

40/53



Simulation Results — Setup
¢ Investigate multiplexing capabilities

¢ Achievable sum rate as figure of merit

40/53



Simulation Results — Setup
* |nvestigate multiplexing capabilities
¢ Achievable sum rate as figure of merit

e Channel conditions
® Poor: L = 8rays

® Rich: L = 64 rays

40/53



Simulation Results — Setup
¢ Investigate multiplexing capabilities
¢ Achievable sum rate as figure of merit
¢ Channel conditions
® Poor: L = 8 rays
® Rich: L = 64 rays
e Quter layer simulations: effect of number of streams N, on sum
rate with single-user U = 1

40/53



Simulation Results — Setup
* |nvestigate multiplexing capabilities
¢ Achievable sum rate as figure of merit

¢ Channel conditions
® Poor: L = 8 rays
® Rich: L = 64 rays
e Quter layer simulations: effect of number of streams N, on sum
rate with single-user U = 1

¢ Inner layer simulations: influence of number U of UEs on sum
rate (N, = 1)

40/53



Simulation Results — Setup
* |nvestigate multiplexing capabilities
¢ Achievable sum rate as figure of merit

e Channel conditions
® Poor: L = 8rays

® Rich: L = 64 rays

Outer layer simulations: effect of number of streams N, on sum
rate with single-user U = 1

¢ Inner layer simulations: influence of number U of UEs on sum
rate (N, = 1)

Benchmark: single-layer equivalent, partial zero-forcing®

3 S. Buzzi and C. D’Andrea, “Energy efficiency and asymptotic performance
evaluation of beamforming structures in doubly massive MIMO mmWave systems,”
IEEE Transactions on Green Communications and Networking, v. 2, n. 2, p. 385-396,
2018.
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Simulation Results — Setup
¢ Investigate multiplexing capabilities
¢ Achievable sum rate as figure of merit
¢ Channel conditions
® Poor: L = 8 rays
® Rich: L = 64 rays
e Quter layer simulations: effect of number of streams N, on sum
rate with single-user U = 1

¢ Inner layer simulations: influence of number U of UEs on sum
rate (N, = 1)
e Benchmark: single-layer equivalent, partial zero-forcing®
® Some parameters:
® N = N, = 64 antennas
e Channel gains variance o2 = 1

. i iments
3 S. Buzzi and C. D’Andrea, “Energy efficiency and asymptotic performance
evaluation of beamforming structures in doubly massive MIMO mmWave systems,”
IEEE Transactions on Green Communications and Networking, v. 2, n. 2, p. 385-396,
2018.
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Simulation results — Outer layer
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Simulation Results
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Simulation Results
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Part lll: MmWave Channel Estimation with
Synchronization Impairments

Related publications

® Proc. IEEE ICASSP 2019

® Wideband extension under preparation



MmWave Channel Estimation with Synchronization
Impairments

¢ High-quality oscillators in mmWave are expensive
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* |mpairments:
® Carrier frequency offset (CFO)

® Phase noise (PN)

¢ Classical approach: compensate impairments prior to
beamforming and channel estimation

e MmWave: low SNR operation — classical methods may fail*

4 N. J. Myers and R. W. Heath Jr. “Message passing-based joint CFO and channel
estimation in mmWave systems with one-bit ADCs.” IEEE Transactions on Wireless
Communications, v. 18, v. 6, June 2019.
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MmWave Channel Estimation with Synchronization
Impairments

¢ High-quality oscillators in mmWave are expensive
e Carrier signal far from ideal

* |mpairments:
® Carrier frequency offset (CFO)

® Phase noise (PN)

¢ Classical approach: compensate impairments prior to
beamforming and channel estimation

e MmWave: low SNR operation — classical methods may fail*

¢ Joint wideband mmWave channel parameters, PN and CFO
estimation

4 N. J. Myers and R. W. Heath Jr. “Message passing-based joint CFO and channel
estimation in mmWave systems with one-bit ADCs.” IEEE Transactions on Wireless
Communications, v. 18, v. 6, June 2019.
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System Model
Time-Domain Protocol
e Sample period T,
e Symbol period Ts: comprises N, samples — T; = N, T,
® Block period Ty: comprises N, symbols — T, = N, T

® Frame period T: comprises N, blocks — Ty = Ny T
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System Model
Time-Domain Protocol
e Sample period T,
e Symbol period Ts: comprises N, samples — T; = N, T,
® Block period Ty: comprises N, symbols — T, = N, T

® Frame period T: comprises N, blocks — Ty = Ny T

System Parameters
® (N; x N,) single-user MIMO system
¢ Transmission of /V,-length pilot sequences

¢ Transmit and receive codebooks of length M; and M,.,
respectively

Single local oscillator at each end: €2 [rad/s]

Phase Noise: ¢,, = ¢,,_1 + w, (Wiener process)
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System Model

Channel Model

Channel matrix at frame ny and tap n.

NN, &
Hy,n = \/?Zanflgnc,wr ( ?)7927)) ay (¢Et>,9§t>> € CNrxNe
=1

® «a,, — frame-variant complex channel path gain

® gn.0 = g(nTs — 1) — effective pulse shaping function
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System Model

Channel Model

Channel matrix at frame ny and tap n.

NN, &
an,nc _ tL r Zanfjgnc,éa'r ( 27)7927)> a;,r (QSEt)aeEt)) c (CNrXNt
=1

® «a,, — frame-variant complex channel path gain

® gn.0 = g(nTs — 1) — effective pulse shaping function

Parameters Time-Scale
® PN: Sample scale — ¢,,,, n, = 1,..., N,

e CFO:Blockscale—Q-ny,ny =1,..., N,

® Channel gains: Frame scale — ay,; ¢, ny = 1,..., Ny
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System Model

Received signal at sample n,, symbol n, block n, frame ny, filtered
by transmit beamformer f,,, and receive beamformer w.,,, :

Ng—1
Q-
Ymp,me,no,ns,np,np = e motono) Z w Hng, ncfmtSns_nc+w #Omyngngneng
ne=0
Frame scale | [e3W I o | Ny = 2 frames
(Fading)
TX BF index | h } I } i ! L2 | M, =2 filters
Block scale | 9 | 02 | 3 | 4 | o e
(CFO) Ny, = 4 blocks
RX BF index |21 4 @2 o Wi, W2, W1, W | WL, W2 a0 9 filters

Symbol scah:| S1 | 52 | 53 | 54 | | S8 |N‘,:85ymbols

Fmglej«m|ﬁjm.|,)m+m l ol

Sample scale |p.ir/u

(PN)

€192

eids

el

el s

o

(ﬁj‘”iejm P;m»},mn N, = 16 samples
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Fr(%yll(cl;( ()ll( | [e3W] I o | Ny = 2 frames
o
TX BF index | L : E__, LN Ly M =2 e
Bl(z%sz(%SLlo | 7% | e/2 | eJ3 | el | N, = 4 blocks
RX BF index |21 4 @2 o Wi, W2, Wi, W | WL, W2 a0 9 filters
Symbol scale | $1 | 52 | 53 | $4 | 85 | S6 | | N, = 8 symbols
Sam(]g)lf\r};cale |p/f/n eIP2leids|eida|pids|cide (Jmi,wx P;0»|¢J<6xx|ﬁmun| Jd'IJr’7"J|,]0HPI‘§J+JG‘H N, = 16 samples
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System Model — Tensor Formulation
Effective channel tensor

C:I&L XlAr ><214;§k X3GX4§X5QX6F (43)

o A, c CN*Land A, € CN+*L — gpatial signatures
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System Model — Tensor Formulation
Effective channel tensor

C:I&L XlAr XQA); X3GX4@X5QX6F (43)
o A, c CN*Land A, € CN+*L — gpatial signatures

® G ¢ CNe*' —time signature

* & = L Diag(e’?",... 7N )1y, ., € CNoXE — PN matrix

VL
(rank-1)
°« 0= % Diag(e’?, ..., e? N1 )1y, ., € CNo*E — GFO matrix

e I' € CNs*L —fading matrix
Received signal tensor

V=Cx; Wx, FT x3 8T+ 2 (44)
=T x1 WHA, 5o FTA; x38TG x, ® x5 Q@ xs T+ Z. (45)

Canonical polyadic decomposition (CPD) model!
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1. Factorize received signal tensor ) into CPD model
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yZI@"L X1 WHAT X9 _1'711-142< X3 STG Xa P x5 xg '+ 2

Steps
1. Factorize received signal tensor ) into CPD model
2. Solve permutation ambiguity

3. Estimate the path angles and delays by solving sparse recovery

problems

minimize [|lor]l1
subject to i1y — [IL ® (WHE o2 < o,
minimize  ||ve|l1

Ut
subject to ||lq(a) — [IL ® (FT®)]vi]l2 < o,
minimize  ||vs]|1

Us
subject to |lg(3y — [IL ® (ST‘IJS)}USHQ <o,

4. Estimate PN and CFO directly from the CPD factors
5. Estimate channel fading matrix as

I = Y {[nmw (STG) o (FTA) o (WHAT)]T}T .

(46)

(47)

(48)

(49)

48/53



Simulation Results

Figures of Merit
Angles, delays and CFO (L = 1)

L A2
NMSE(z) = S mm “’Z” (50)
=1
Phase noise
NMSE(9) = 5 1#no = . T;“‘ (51)
ne=1 o
Fading matrix
_Ir =12
NMSE(T") = i (52)

Calculate NMSE for different
codebook lengths and samples
number N,
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Simulation Results

Figures of Merit
Angles, delays and CFO (L = 1)

L
NMSE(z) =
Phase noise

NMSE(¢ Z |¢’"|¢nj;°‘ (51)

ne=1
Fading matrix
|T — T3
T2
Calculate NMSE for different

codebook lengths and samples
number N,

NMSE(T) = (52)

Parameter Setup

N; = N, = 16 antennas
No,=Ny=N;=2
Sampling period Ts = 0.1 us
Carrier frequency 28 GHz
10 ppm CFO: 280 kHz

2000 independent trials
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* Low-complexity tensor beamforming filters

® | ow-rank extension of tensor filters

Part Il

* Energy efficiency analysis of precoding structures for mmWave
massive MIMO

® Double-sided massive MIMO transceiver schemes

Part Il

¢ Tensor methods for joint wideband channel parameters, phase
noise and CFO
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Some Perspectives

Tensor filters extensions
® Tensor train model

® Unsupervised strategies

Wide-band and multi-carrier extensions of the proposed massive
MIMO methods

¢ Transceiver performance under imperfect CSI

Channel parameter tracking
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