Doctoral Thesis Defense

Signal Processing Methods for Large-Scale Multi-Antenna Systems

Lucas Nogueira Ribeiro

Advisor: Prof. Dr. André Lima Férrer de Almeida Co-Advisor: Prof. Dr. João César Moura Mota

Universidade Federal do Ceará Teleinformatics Engineering Department

Fortaleza, October 10th, 2019

- · Number of connected devices keeps growing every year
- Very large capacity requirements
- How to achieve larger system capacity?
 - Beamforming gain \rightarrow Massive MIMO
 - Increase bandwidth → Millimeter wave bands

- · Number of connected devices keeps growing every year
- Very large capacity requirements
- How to achieve larger system capacity?
 - Beamforming gain → Massive MIMO
 - Increase bandwidth \rightarrow Millimeter wave bands

- · Number of connected devices keeps growing every year
- Very large capacity requirements
- How to achieve larger system capacity?
 - Beamforming gain \rightarrow Massive MIMO
 - Increase bandwidth \rightarrow Millimeter wave bands

- Number of connected devices keeps growing every year
- Very large capacity requirements
- · How to achieve larger system capacity?
 - Beamforming gain \rightarrow Massive MIMO
 - Increase bandwidth \rightarrow Millimeter wave bands

Challenges

- 1. Computational complexity of large-scale filter design;
- 2. Energy efficiency of mmWave massive MIMO transceivers;
- 3. MmWave channel estimation under synchronization impairments.

Challenges

- 1. Computational complexity of large-scale filter design;
- 2. Energy efficiency of mmWave massive MIMO transceivers;
- 3. MmWave channel estimation under synchronization impairments.

Challenges

- 1. Computational complexity of large-scale filter design;
- 2. Energy efficiency of mmWave massive MIMO transceivers;
- 3. MmWave channel estimation under synchronization impairments.

Iterative implementation of linear filters

- P. Harris et al., "Serving 22 users in real-time with a 128-antenna massive MIMO testbed." 2016 IEEE International Workshop on Signal Processing Systems (SiPS), p. 266-272.
 - Systolic array implementation of QR decomposition for Zero-Forcing filtering
- X. Qin et al., "A near-optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems," IEEE Communications Letters, v. 20, n. 2, p. 276-279, 2015.
 - Joint steepest descent and Jacobi method detection

Iterative implementation of linear filters

- P. Harris et al., "Serving 22 users in real-time with a 128-antenna massive MIMO testbed." 2016 IEEE International Workshop on Signal Processing Systems (SiPS), p. 266-272.
 - Systolic array implementation of QR decomposition for Zero-Forcing filtering
- X. Qin et al., *"A near-optimal detection scheme based on joint steepest descent and Jacobi method for uplink massive MIMO systems,"* IEEE Communications Letters, v. 20, n. 2, p. 276-279, 2015.
 - · Joint steepest descent and Jacobi method detection

Hybrid analog/digital (A/D) systems

O. El Ayach et al., *"Spatially sparse precoding in millimeter wave MIMO systems,"* IEEE Transactions on Wireless Communications, v. 13, n. 3, p. 1499-1513, 2014.

Digital systems with low-resolution data converters

K. Roth et al., *"A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect CSI,"* IEEE Journal of Selected Topics in Signal Processing, v. 12, n. 3, p. 484-498, 2018.

Hybrid analog/digital (A/D) systems

O. El Ayach et al., *"Spatially sparse precoding in millimeter wave MIMO systems,"* IEEE Transactions on Wireless Communications, v. 13, n. 3, p. 1499-1513, 2014.

Digital systems with low-resolution data converters

K. Roth et al., *"A comparison of hybrid beamforming and digital beamforming with low-resolution ADCs for multiple users and imperfect CSI,"* IEEE Journal of Selected Topics in Signal Processing, v. 12, n. 3, p. 484-498, 2018.

MmWave channel estimation with carrier frequency offset (CFO) impairment

- N. J. Myers and R. W. Heath Jr., "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs," IEEE Transactions on Wireless Communications, v. 18, n. 6, June 2019.
 - Sparse bilinear optimization \rightarrow message passing solution
- J. Rodríguez-Fernández and N. González-Prelcic, "Channel estimation for hybrid mmWave MIMO systems with CFO uncertainties," to appear in IEEE Transactions on Wireless Communications, 2019
 - Maximum likelihood estimator

MmWave channel estimation with carrier frequency offset (CFO) impairment

- N. J. Myers and R. W. Heath Jr., "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs," IEEE Transactions on Wireless Communications, v. 18, n. 6, June 2019.
 - Sparse bilinear optimization \rightarrow message passing solution
- J. Rodríguez-Fernández and N. González-Prelcic, "Channel estimation for hybrid mmWave MIMO systems with CFO uncertainties," to appear in IEEE Transactions on Wireless Communications, 2019
 - Maximum likelihood estimator

Thesis Overview

Part I: Multilinear Filtering

Related publications

- IET Signal Processing, v. 13, n. 4, p. 434–442, June 2019
 - Signal Processing, v. 158, p. 15–25, May 2019
 - Proc. SBRT 2018
 - Proc. IEEE ISWCS 2019

• Multi-linear and time-invariant filter:

$$oldsymbol{w} = oldsymbol{w}_1 \otimes \cdots \otimes oldsymbol{w}_M \in \mathbb{C}^N$$

- Basic idea: design each factor instead of the whole vector
- Fewer computations?
- How much performance loss, if any?
- Beamforming and equalization problems

• Multi-linear and time-invariant filter:

$$oldsymbol{w} = oldsymbol{w}_1 \otimes \cdots \otimes oldsymbol{w}_M \in \mathbb{C}^N$$

- Basic idea: design each factor instead of the whole vector
- Fewer computations?
- How much performance loss, if any?
- Beamforming and equalization problems

• Multi-linear and time-invariant filter:

$$\boldsymbol{w} = \boldsymbol{w}_1 \otimes \cdots \otimes \boldsymbol{w}_M \in \mathbb{C}^N$$

- Basic idea: design each factor instead of the whole vector
- Fewer computations?
- How much performance loss, if any?
- Beamforming and equalization problems

• Multi-linear and time-invariant filter:

$$\boldsymbol{w} = \boldsymbol{w}_1 \otimes \cdots \otimes \boldsymbol{w}_M \in \mathbb{C}^N$$

- Basic idea: design each factor instead of the whole vector
- Fewer computations?
- How much performance loss, if any?
- Beamforming and equalization problems

• Multi-linear and time-invariant filter:

$$\boldsymbol{w} = \boldsymbol{w}_1 \otimes \cdots \otimes \boldsymbol{w}_M \in \mathbb{C}^N$$

- Basic idea: design each factor instead of the whole vector
- Fewer computations?
- How much performance loss, if any?
- · Beamforming and equalization problems

Scenario

- Narrowband far-field propagation
- R independent sources $s_r[k]$ impinging on the receiver with N antennas
- Multi-user system with R users and line-of-sight propagation

Scenario

- Narrowband far-field propagation
- R independent sources $s_r[k]$ impinging on the receiver with N antennas
- Multi-user system with R users and line-of-sight propagation

System Model

Received Signal

$$\boldsymbol{x}[k] = \boldsymbol{A}\boldsymbol{s}[k] + \boldsymbol{b}[k] \tag{1}$$

- $\boldsymbol{s}[k] = [s_1[k], \dots, s_R[k]]^\mathsf{T} \in \mathbb{C}^R$ sources vector
- $\boldsymbol{A} = [\boldsymbol{a}(\phi_1, \theta_1), \dots, \boldsymbol{a}(\phi_R, \theta_R)] \in \mathbb{C}^{N \times R}$ array manifold matrix
- $\boldsymbol{b}[k] = [b_1[k], \dots, b_N[k]]^\mathsf{T} \in \mathbb{C}^N$ ad. white Gaus. noise (AWGN)

Beamforming Filter

• Filter $\boldsymbol{x}[k]$ to recover a signal of interest (r = 1)

•
$$\boldsymbol{w} = [w_1, \dots, w_N]^\mathsf{T} \in \mathbb{C}^N$$

• Filter output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]$$

System Model

Received Signal

$$\boldsymbol{x}[k] = \boldsymbol{A}\boldsymbol{s}[k] + \boldsymbol{b}[k] \tag{1}$$

- $\boldsymbol{s}[k] = [s_1[k], \dots, s_R[k]]^\mathsf{T} \in \mathbb{C}^R$ sources vector
- $A = [a(\phi_1, \theta_1), \dots, a(\phi_R, \theta_R)] \in \mathbb{C}^{N \times R}$ array manifold matrix
- $\boldsymbol{b}[k] = [b_1[k], \dots, b_N[k]]^{\mathsf{T}} \in \mathbb{C}^N$ ad. white Gaus. noise (AWGN)

Beamforming Filter

- Filter $\boldsymbol{x}[k]$ to recover a signal of interest (r = 1)
- $\boldsymbol{w} = [w_1, \dots, w_N]^\mathsf{T} \in \mathbb{C}^N$
- Filter output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]$$

Uniform Planar Array

UPA array response is separable

$$\mathbf{a}(\phi_r, \theta_r) = \begin{bmatrix} 1\\ e^{-j\pi\cos\theta_r}\\ \vdots\\ e^{-j\pi(N_v-1)\cos\theta_r} \end{bmatrix} \otimes \begin{bmatrix} 1\\ e^{-j\pi\sin\phi_r\sin\theta_r}\\ \vdots\\ e^{-j\pi(N_h-1)\sin\phi_r\sin\theta_r} \end{bmatrix}$$
$$= \mathbf{a}_v(q_r) \otimes \mathbf{a}_h(p_r)$$

where $p_r = \sin \phi_r \sin \theta_r$ and $q_r = \cos \theta_r$.

Array manifold matrix:

$$oldsymbol{A} = oldsymbol{A}_v \diamond oldsymbol{A}_h \in \mathbb{C}^{N_v N_h imes R}$$

Apply separable filter $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$ to each array dimension

$$(\boldsymbol{w}_{v} \otimes \boldsymbol{w}_{h})^{\mathsf{H}}(\boldsymbol{A}_{v} \diamond \boldsymbol{A}_{h}) = (\boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{A}_{v}) \otimes (\boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{A}_{h})$$

Uniform Planar Array

UPA array response is separable

$$\boldsymbol{a}(\phi_{T},\theta_{T}) = \begin{bmatrix} 1\\ e^{-j\pi\cos\theta_{T}}\\ \vdots\\ e^{-j\pi(N_{v}-1)\cos\theta_{T}} \end{bmatrix} \otimes \begin{bmatrix} 1\\ e^{-j\pi\sin\phi_{T}\sin\theta_{T}}\\ \vdots\\ e^{-j\pi(N_{h}-1)\sin\phi_{T}\sin\theta_{T}} \end{bmatrix}$$
$$= \boldsymbol{a}_{v}(q_{T}) \otimes \boldsymbol{a}_{h}(p_{T})$$

where $p_r = \sin \phi_r \sin \theta_r$ and $q_r = \cos \theta_r$.

Array manifold matrix:

$$\boldsymbol{A} = \boldsymbol{A}_v \diamond \boldsymbol{A}_h \in \mathbb{C}^{N_v N_h imes R}$$

Apply separable filter $oldsymbol{w} = oldsymbol{w}_v \otimes oldsymbol{w}_h$ to each array dimension

$$(\boldsymbol{w}_{v} \otimes \boldsymbol{w}_{h})^{\mathsf{H}}(\boldsymbol{A}_{v} \diamond \boldsymbol{A}_{h}) = (\boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{A}_{v}) \otimes (\boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{A}_{h})$$

Uniform Planar Array

UPA array response is separable

$$\mathbf{a}(\phi_{T},\theta_{T}) = \begin{bmatrix} 1\\ e^{-j\pi\cos\theta_{T}}\\ \vdots\\ e^{-j\pi(N_{V}-1)\cos\theta_{T}} \end{bmatrix} \otimes \begin{bmatrix} 1\\ e^{-j\pi\sin\phi_{T}\sin\theta_{T}}\\ \vdots\\ e^{-j\pi(N_{h}-1)\sin\phi_{T}\sin\theta_{T}} \end{bmatrix}$$
$$= \mathbf{a}_{V}(q_{T}) \otimes \mathbf{a}_{h}(p_{T})$$

where $p_r = \sin \phi_r \sin \theta_r$ and $q_r = \cos \theta_r$.

Array manifold matrix:

$$oldsymbol{A} = oldsymbol{A}_v \diamond oldsymbol{A}_h \in \mathbb{C}^{N_v N_h imes R}$$

Apply separable filter $oldsymbol{w} = oldsymbol{w}_v \otimes oldsymbol{w}_h$ to each array dimension

$$(\boldsymbol{w}_{v} \otimes \boldsymbol{w}_{h})^{\mathsf{H}}(\boldsymbol{A}_{v} \diamond \boldsymbol{A}_{h}) = (\boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{A}_{v}) \otimes (\boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{A}_{h})$$

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

Received signal model

$$\boldsymbol{X}[k] = \mathcal{A} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter $w = w = w_v \otimes w_h$ output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$$
(4)

$$= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$$
(5)

- Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter
$$\boldsymbol{w} = \boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$$
 output:
 $y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$ (4)
 $= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$ (5)

- Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter
$$\boldsymbol{w} = \boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$$
 output:
 $y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$
 $= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$
(5)

- Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

• Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter $w = w = w_v \otimes w_h$ output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$$
(4)

$$= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$$
(5)

• Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$

Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter $w = w = w_v \otimes w_h$ output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$$
(4)

$$= \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_{v}^{*} = \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_{h}^{*}$$
(5)

- Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

• Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter $w = w = w_v \otimes w_h$ output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$$
(4)

$$= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$$
(5)

- Define $\boldsymbol{u}_h[k] = \boldsymbol{X}[k] \boldsymbol{w}_v^* \in \mathbb{C}^{N_h}$ and $\boldsymbol{u}_v[k] = \boldsymbol{X}^\mathsf{T}[k] \boldsymbol{w}_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

We define the array steering tensor

$$\mathcal{A} = \mathcal{I}_{3,R} \times_1 \mathbf{A}_h \times_2 \mathbf{A}_v \times_3 \mathbf{I}_R \in \mathbb{C}^{N_h \times N_v \times R}$$
(2)

Received signal model

$$\boldsymbol{X}[k] = \boldsymbol{\mathcal{A}} \times_3 \boldsymbol{s}^{\mathsf{T}}[k] + \boldsymbol{B}[k] \in \mathbb{C}^{N_h \times N_v}$$
(3)

• Filter $w = w = w_v \otimes w_h$ output:

$$y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k] = \boldsymbol{X}[k] \times_1 \boldsymbol{w}_h^{\mathsf{H}} \times_2 \boldsymbol{w}_v^{\mathsf{H}}$$
(4)

$$= \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{X}[k] \boldsymbol{w}_v^* = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{X}^{\mathsf{T}}[k] \boldsymbol{w}_h^*$$
(5)

- Define $u_h[k] = X[k]w_v^* \in \mathbb{C}^{N_h}$ and $u_v[k] = X^{\mathsf{T}}[k]w_h^* \in \mathbb{C}^{N_v}$
- Output signal rewritten as

$$y[k] = \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{u}_h[k] = \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{u}_v[k]$$
(6)

Beamforming Filter Design – Tensor MMSE (TMMSE)

• Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{u}_{h}[k] \right|^{2} \right]$$

$$\min_{\boldsymbol{w}_{v}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{u}_{v}[k] \right|^{2} \right]$$
(8a)
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $oldsymbol{w}_{ ext{TMMSE}} = oldsymbol{w}_v \otimes oldsymbol{w}_h$
- Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

¹ A. Yener, R. D. Yates, S. Ulukus, *"Interference management for CDMA systems through power control, multiuser detection, and beamforming,"* IEEE Transactions on Communications, v. 49, n. 7, p. 1227–1239, 2001.
• Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\begin{split} \min_{\boldsymbol{w}_{h}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{u}_{h}[k] \right|^{2} \right] & \text{(8a)} \\ \min_{\boldsymbol{w}_{v}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{u}_{v}[k] \right|^{2} \right] & \text{(8b)} \end{split}$$

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $oldsymbol{w}_{ ext{TMMSE}} = oldsymbol{w}_v \otimes oldsymbol{w}_h$
- Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}}\boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{u}_{h}[k] \right|^{2} \right]$$

$$\min_{\boldsymbol{w}_{v}} \mathbb{E} \left[\left| s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{u}_{v}[k] \right|^{2} \right]$$
(8a)
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $oldsymbol{w}_{ ext{TMMSE}} = oldsymbol{w}_v \otimes oldsymbol{w}_h$
- Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{u}_{h}[k]\right|^{2}\right]$$
(8a)
$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{u}_{v}[k]\right|^{2}\right]$$
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $w_{\text{TMMSE}} = w_v \otimes w_h$
- Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}}\boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}}\boldsymbol{u}_{h}[k]\right|^{2}\right]$$
(8a)
$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}}\boldsymbol{u}_{v}[k]\right|^{2}\right]$$
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $w_{\mathrm{TMMSE}} = w_v \otimes w_h$
- Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $min(N_h, N_v)$ (tensor)

Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{u}_{h}[k]\right|^{2}\right]$$
(8a)
$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{u}_{v}[k]\right|^{2}\right]$$
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $w_{\mathrm{TMMSE}} = w_v \otimes w_h$
- · Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

Consider the classical minimum mean square error (MMSE) filter design:

$$\min_{\boldsymbol{w}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]\right|^{2}\right]$$
(7)

• From the bilinearity property, we may write

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}}\boldsymbol{u}_{h}[k]\right|^{2}\right]$$
(8a)
$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}}\boldsymbol{u}_{v}[k]\right|^{2}\right]$$
(8b)

- Alternating optimization in (8a) and (8b) until convergence
- After convergence¹: $w_{\mathrm{TMMSE}} = w_v \otimes w_h$
- · Tikhonov regularization is applied to avoid numerical instability
- Exchange degrees of freedom for complexity reduction
- N (linear) vs. $\min(N_h, N_v)$ (tensor)

Beamforming Filter Design – Tensor LCMV (TLCMV)

 We also consider the linear constraint minimum variance (LCMV) filter

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{\mathsf{H}} \boldsymbol{R}_{xx} \boldsymbol{w}, \quad \text{s.t. } \boldsymbol{C}^{\mathsf{H}} \boldsymbol{w} = \boldsymbol{f} \tag{9}$$

where $C \in \mathbb{C}^{N \times R}$ denotes the constraint matrix, $f \in \mathbb{C}^R$ the array factor vector and R_{xx} the cov. matrix of x[k]

• We can decouple (9) into

$$\min_{\boldsymbol{w}_h} \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{R}_{hh} \boldsymbol{w}_h, \quad \text{s.t.} \quad \boldsymbol{C}_h^{\mathsf{H}} \boldsymbol{w}_h = \boldsymbol{f}_h$$
(10a)
$$\min_{\boldsymbol{w}_v} \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{R}_{vv} \boldsymbol{w}_v, \quad \text{s.t.} \quad \boldsymbol{C}_v^{\mathsf{H}} \boldsymbol{w}_v = \boldsymbol{f}_v$$
(10b)

• Apply alternating optimization to (10) until convergence

Beamforming Filter Design – Tensor LCMV (TLCMV)

 We also consider the linear constraint minimum variance (LCMV) filter

$$\min_{\boldsymbol{w}} \boldsymbol{w}^{\mathsf{H}} \boldsymbol{R}_{xx} \boldsymbol{w}, \quad \text{s.t. } \boldsymbol{C}^{\mathsf{H}} \boldsymbol{w} = \boldsymbol{f} \tag{9}$$

where $C \in \mathbb{C}^{N \times R}$ denotes the constraint matrix, $f \in \mathbb{C}^R$ the array factor vector and R_{xx} the cov. matrix of x[k]

• We can decouple (9) into

$$\min_{\boldsymbol{w}_h} \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{R}_{hh} \boldsymbol{w}_h, \quad \text{s.t.} \ \boldsymbol{C}_h^{\mathsf{H}} \boldsymbol{w}_h = \boldsymbol{f}_h \tag{10a}$$

$$\min_{\boldsymbol{w}_v} \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{R}_{vv} \boldsymbol{w}_v, \quad \text{s.t.} \ \boldsymbol{C}_v^{\mathsf{H}} \boldsymbol{w}_v = \boldsymbol{f}_v \tag{10b}$$

• Apply alternating optimization to (10) until convergence

- Linear sub-arrays in planar array
- Horizontal sub-array

 $oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$ (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$

Horizontal sub-array

$$oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$$
 (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$

Horizontal sub-array

$$oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$$
 (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$

· Horizontal sub-array

$$oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$$
 (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$

Horizontal sub-array

$$oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$$
 (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $oldsymbol{w} = oldsymbol{w}_v \otimes oldsymbol{w}_h$

Horizontal sub-array

$$oldsymbol{x}_h[k] = oldsymbol{A}_h oldsymbol{s}[k] + oldsymbol{b}_h[k] \in \mathbb{C}^{N_h}$$
 (11)

$$oldsymbol{x}_v[k] = oldsymbol{A}_v oldsymbol{s}[k] + oldsymbol{b}_v[k] \in \mathbb{C}^{N_v}$$
 (12)

- Idea: design w_h and w_v independently
- Capture sub-array signals only
- Obtain full beamformer by $\boldsymbol{w} = \boldsymbol{w}_v \otimes \boldsymbol{w}_h$

Beamforming Filter Design – Kronecker Filters

Kronecker MMSE (KMMSE) Filter

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{x}_{h}[k]\right|^{2}\right]$$
(13a)

$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{x}_{v}[k]\right|^{2}\right]$$
(13b)

Kronecker LCMV (KLCMV) Filter

$$\min_{\boldsymbol{w}_h} \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{R}_h \boldsymbol{w}_h, \quad \text{s.t.} \quad \boldsymbol{C}_h^{\mathsf{H}} \boldsymbol{w}_h = \boldsymbol{f}_h \tag{14a}$$
$$\min_{\boldsymbol{w}_v} \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{R}_v \boldsymbol{w}_v, \quad \text{s.t.} \quad \boldsymbol{C}_v^{\mathsf{H}} \boldsymbol{w}_v = \boldsymbol{f}_v \tag{14b}$$

where R_h and R_v are the covariance matrices of $x_h[k]$ and $x_v[k]$, respectively

Compute w_h , w_v and combine with Kronecker once!

Beamforming Filter Design – Kronecker Filters

Kronecker MMSE (KMMSE) Filter

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{x}_{h}[k]\right|^{2}\right]$$
(13a)

$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{x}_{v}[k]\right|^{2}\right]$$
(13b)

Kronecker LCMV (KLCMV) Filter

$$\min_{\boldsymbol{w}_h} \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{R}_h \boldsymbol{w}_h, \quad \text{s.t.} \ \boldsymbol{C}_h^{\mathsf{H}} \boldsymbol{w}_h = \boldsymbol{f}_h \tag{14a}$$

$$\min_{\boldsymbol{w}_v} \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{R}_v \boldsymbol{w}_v, \quad \text{s.t.} \ \boldsymbol{C}_v^{\mathsf{H}} \boldsymbol{w}_v = \boldsymbol{f}_v \tag{14b}$$

where R_h and R_v are the covariance matrices of $x_h[k]$ and $x_v[k]$, respectively

Compute w_h , w_v and combine with Kronecker once!

Beamforming Filter Design – Kronecker Filters

Kronecker MMSE (KMMSE) Filter

$$\min_{\boldsymbol{w}_{h}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{h}^{\mathsf{H}} \boldsymbol{x}_{h}[k]\right|^{2}\right]$$
(13a)

$$\min_{\boldsymbol{w}_{v}} \mathbb{E}\left[\left|s_{\text{SOI}}[k] - \boldsymbol{w}_{v}^{\mathsf{H}} \boldsymbol{x}_{v}[k]\right|^{2}\right]$$
(13b)

Kronecker LCMV (KLCMV) Filter

$$\min_{\boldsymbol{w}_h} \boldsymbol{w}_h^{\mathsf{H}} \boldsymbol{R}_h \boldsymbol{w}_h, \quad \text{s.t.} \ \boldsymbol{C}_h^{\mathsf{H}} \boldsymbol{w}_h = \boldsymbol{f}_h \tag{14a}$$

$$\min_{\boldsymbol{w}_v} \boldsymbol{w}_v^{\mathsf{H}} \boldsymbol{R}_v \boldsymbol{w}_v, \quad \text{s.t.} \ \boldsymbol{C}_v^{\mathsf{H}} \boldsymbol{w}_v = \boldsymbol{f}_v \tag{14b}$$

where R_h and R_v are the covariance matrices of $x_h[k]$ and $x_v[k]$, respectively

Compute w_h , w_v and combine with Kronecker once!

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for I iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for I iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for I iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for *I* iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for I iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

- MMSE/LCMV: $O(N^3)$
- TMMSE/TLCMV: $O(I(N_h^3 + N_v^3))$, for I iterations
- KMMSE/KLCMV: $O(N_h^3 + N_v^3)$

- The MMSE and LCMV filters (as well as their tensor extensions) depend on second-order statistics
- Sample estimates when they are not known
- The adaptive implementation of the proposed tensor and Kronecker MMSE and LCMV filters have been developed

Simulation Results

Setup

- Direction cosines p_r and q_r uniformly distributed in $\mathcal{U}(-0.9, 0.9)$
- R = 4 sources QPSK signals
- N = 64 antennas ($N_h = N_v = 8$), half-wave spacing

Figures of Merit

- Floating point operations (flops) computational complexity
- Uncoded bit error ratio (BER) for MMSE-type filters
- Output SINR for LCMV-type filters

$$\mathsf{SINR}_{\mathsf{out}} = rac{oldsymbol{w}^{\mathsf{H}} oldsymbol{R}_{dd} oldsymbol{w}}{oldsymbol{w}^{\mathsf{H}} (oldsymbol{R}_{ii} + oldsymbol{R}_{bb}) oldsymbol{w}}$$

Simulation Results

Setup

- Direction cosines p_r and q_r uniformly distributed in $\mathcal{U}(-0.9, 0.9)$
- R = 4 sources QPSK signals
- N = 64 antennas ($N_h = N_v = 8$), half-wave spacing

Figures of Merit

- Floating point operations (flops) computational complexity
- Uncoded bit error ratio (BER) for MMSE-type filters
- Output SINR for LCMV-type filters

$$\mathsf{SINR}_\mathsf{out} = rac{oldsymbol{w}^\mathsf{H}oldsymbol{R}_{dd}oldsymbol{w}}{oldsymbol{w}^\mathsf{H}(oldsymbol{R}_{ii}+oldsymbol{R}_{bb})oldsymbol{w}},$$

Simulation Results – BER and SINR

What about non-separable channels? Multipath?

Low-Rank Filters

$$oldsymbol{w} = \sum_{r=1}^R oldsymbol{w}_{1,r} \otimes \ldots \otimes oldsymbol{w}_{M,r}$$

Order *M* Rank *R*

What about non-separable channels? Multipath?

Low-Rank Filters

$$w = \sum_{r=1}^R w_{1,r} \otimes \ldots \otimes w_{M,r}$$

Order M Rank R

What about non-separable channels? Multipath?

Low-Rank Filters

$$oldsymbol{w} = \sum_{r=1}^R oldsymbol{w}_{1,r} \otimes \ldots \otimes oldsymbol{w}_{M,r}$$

Order M Rank R

• Uplink scenario, U users

$$\boldsymbol{x}[k] = \sum_{u=1}^{U} \boldsymbol{H}_{u} \boldsymbol{s}_{u}[k] + \boldsymbol{b}[k]$$
(15)

$$s_u[k] = [s_u[k], \dots, s_u[k-Q+1]]^{\mathsf{T}}$$
 (16)

$$\boldsymbol{H}_{u} = \sum_{\ell=1}^{L} \alpha_{u,\ell} \boldsymbol{a}(\theta_{u,\ell}) \boldsymbol{g}(\tau_{u,\ell})^{\mathsf{T}} \in \mathbb{C}^{N \times Q}$$
(17)

$$a(\theta_{u,\ell}) = \left[1, \dots, e^{-j\pi(N-1)\cos\theta_{u,\ell}}\right]^{\mathsf{T}} \in \mathbb{C}^N$$
(18)

$$\boldsymbol{g}(\tau_{u,\ell}) = \left[g(-\tau_{u,\ell}), \dots, g((Q-1)T - \tau_{u,\ell})\right]^{\mathsf{T}} \in \mathbb{C}^Q$$
(19)

- *H_u* is not separable, but admits a low-rank structure
- Low-rank equalizer to filter the desired data stream $s_u[k]$

• Uplink scenario, U users

$$\boldsymbol{x}[k] = \sum_{u=1}^{U} \boldsymbol{H}_{u} \boldsymbol{s}_{u}[k] + \boldsymbol{b}[k]$$
(15)

$$s_u[k] = [s_u[k], \dots, s_u[k-Q+1]]^{\mathsf{T}}$$
 (16)

$$\boldsymbol{H}_{u} = \sum_{\ell=1}^{L} \alpha_{u,\ell} \boldsymbol{a}(\theta_{u,\ell}) \boldsymbol{g}(\tau_{u,\ell})^{\mathsf{T}} \in \mathbb{C}^{N \times Q}$$
(17)

$$\boldsymbol{a}(\theta_{u,\ell}) = \left[1, \dots, e^{-\jmath \pi (N-1) \cos \theta_{u,\ell}}\right]^{\mathsf{T}} \in \mathbb{C}^N$$
(18)

$$\boldsymbol{g}(\tau_{u,\ell}) = \left[g(-\tau_{u,\ell}), \dots, g((Q-1)T - \tau_{u,\ell})\right]^{\mathsf{T}} \in \mathbb{C}^Q$$
(19)

- *H_u* is not separable, but admits a low-rank structure
- Low-rank equalizer to filter the desired data stream $s_u[k]$

• Uplink scenario, U users

$$\boldsymbol{x}[k] = \sum_{u=1}^{U} \boldsymbol{H}_{u} \boldsymbol{s}_{u}[k] + \boldsymbol{b}[k]$$
(15)

$$s_u[k] = [s_u[k], \dots, s_u[k-Q+1]]^{\mathsf{T}}$$
 (16)

$$\boldsymbol{H}_{u} = \sum_{\ell=1}^{L} \alpha_{u,\ell} \boldsymbol{a}(\theta_{u,\ell}) \boldsymbol{g}(\tau_{u,\ell})^{\mathsf{T}} \in \mathbb{C}^{N \times Q}$$
(17)

$$\boldsymbol{a}(\theta_{u,\ell}) = \left[1, \dots, e^{-\jmath \pi (N-1) \cos \theta_{u,\ell}}\right]^{\mathsf{T}} \in \mathbb{C}^N$$
(18)

$$\boldsymbol{g}(\tau_{u,\ell}) = \left[g(-\tau_{u,\ell}), \dots, g((Q-1)T - \tau_{u,\ell})\right]^{\mathsf{T}} \in \mathbb{C}^Q$$
(19)

- *H_u* is not separable, but admits a **low-rank** structure
- Low-rank equalizer to filter the desired data stream $s_u[k]$

• Uplink scenario, U users

$$\boldsymbol{x}[k] = \sum_{u=1}^{U} \boldsymbol{H}_{u} \boldsymbol{s}_{u}[k] + \boldsymbol{b}[k]$$
(15)

$$s_u[k] = [s_u[k], \dots, s_u[k-Q+1]]^{\mathsf{T}}$$
 (16)

$$\boldsymbol{H}_{u} = \sum_{\ell=1}^{L} \alpha_{u,\ell} \boldsymbol{a}(\theta_{u,\ell}) \boldsymbol{g}(\tau_{u,\ell})^{\mathsf{T}} \in \mathbb{C}^{N \times Q}$$
(17)

$$\boldsymbol{a}(\theta_{u,\ell}) = \left[1, \dots, e^{-\jmath \pi (N-1) \cos \theta_{u,\ell}}\right]^{\mathsf{T}} \in \mathbb{C}^N$$
(18)

$$\boldsymbol{g}(\tau_{u,\ell}) = \left[g(-\tau_{u,\ell}), \dots, g((Q-1)T - \tau_{u,\ell})\right]^{\mathsf{T}} \in \mathbb{C}^Q$$
(19)

- *H_u* is not separable, but admits a **low-rank** structure
- Low-rank equalizer to filter the desired data stream $s_u[k]$

Some Algebra...

The filter coefficients can be written as

$$w_{n_1,\dots,n_D} = \sum_{r=1}^R \prod_{d=1}^D [w_{d,r}]_{n_d},$$
(20)

which allows us to recast the equalizer output $y[k] = \boldsymbol{w}^{\mathsf{H}} \boldsymbol{x}[k]$ as follows

$$y[k] = \sum_{n_1,\dots,n_D=1}^{N_1,\dots,N_D} \left(\sum_{r=1}^R [\boldsymbol{w}_{1,r}]_{n_1}^* \dots [\boldsymbol{w}_{D,r}]_{n_D}^* \right) x_{n_1,\dots,n_D}[k].$$
(21a)
$$= \sum_{r=1}^R \sum_{n_d=1}^{N_d} [\boldsymbol{w}_{d,r}]_{n_d}^* \left(\sum_{n_q=1}^{N_q} \prod_{q\neq d}^D [\boldsymbol{w}_{q,r}]_{n_q}^* x_{n_1,\dots,n_D}[k] \right)$$
(21b)
$$= \sum_{r=1}^R \sum_{n_d=1}^{N_d} [\boldsymbol{w}_{d,r}]_{n_d}^* [\boldsymbol{u}_{d,r}[k]]_{n_d} = \boldsymbol{w}_d^{\mathsf{H}} \boldsymbol{u}_d[k]$$
(21c)

Output is linear w.r.t. each tensor filter factor $w_d!$

Low-Rank Tensor MMSE

• We formulate for each filter mode

$$\min_{\boldsymbol{w}_d} \mathbb{E}\left[|s_u[k-\delta] - \boldsymbol{w}_d^{\mathsf{H}} \boldsymbol{u}_d[k]|^2\right], \quad d \in \{1, \dots, D\}.$$

where

$$\boldsymbol{u}_{d}[k] = \begin{bmatrix} \boldsymbol{u}_{d,1}^{\mathsf{T}}[k], \dots, \boldsymbol{u}_{d,R}^{\mathsf{T}}[k] \end{bmatrix}^{\mathsf{T}} \in \mathbb{C}^{RN_{d}}$$
(22)

$$\boldsymbol{u}_{d,r}[k] = \boldsymbol{X}_{(d)}[k] \bigotimes_{q \neq d}^{D} \boldsymbol{w}_{q,r}^{*} \in \mathbb{C}^{N_d}$$
 (23)

$$oldsymbol{w}_d = \left[oldsymbol{w}_{d,1}^\mathsf{T}, \dots, oldsymbol{w}_{d,R}^\mathsf{T}
ight]^\mathsf{T} \in \mathbb{C}^{RN_d}$$
 (24)

• Solution:

$$\boldsymbol{w}_{d,\mathsf{MMSE}} = \boldsymbol{R}_{u_d,u_d}^{-1} \boldsymbol{p}_{u_d} \in \mathbb{C}^{RN_d},$$
 (25)

$$\boldsymbol{R}_{u_d,u_d} = \mathbb{E}\left[\boldsymbol{u}_d[k]\boldsymbol{u}_d^{\mathsf{H}}[k]\right] \in \mathbb{C}^{RN_d \times RN_d},$$
(26)

$$\boldsymbol{p}_{u_d} = \mathbb{E}\left[\boldsymbol{u}_d[k]\boldsymbol{s}_u^*[k-\delta]\right] \in \mathbb{C}^{RN_d}$$
(27)

Alternating optimization

- N: number of antennas
- K: number of snapshots (covariance matrix estimation)
- MMSE filter

$$P_{\text{MMSE}}(N,K) = \underbrace{N^2K + NK}_{\text{statistics estimation}} + \underbrace{O(N^3)}_{O(N^3)} + \underbrace{N^2}_{\text{filtering}}$$

LR-TMMSE filter

$$\begin{split} P_{\text{LR-TMMSE}}(\{N_d\}, D, I, K) = \\ I \left[\sum_{d=1}^{D} \underbrace{R(D-1)NK + N_d^2K + N_dK}_{\text{statistics estimation}} + \underbrace{O(N_d^3)}_{\text{filtering}} + \underbrace{N_d^2}_{\text{filtering}} \right] \end{split}$$

- I: iterations number
- Tensor overhead!

- N: number of antennas
- K: number of snapshots (covariance matrix estimation)
- MMSE filter

$$P_{\text{MMSE}}(N,K) = \underbrace{N^2K + NK}_{\text{statistics estimation}} + \underbrace{O(N^3)}_{O(N^3)} + \underbrace{N^2}_{\text{filtering}}$$

LR-TMMSE filter

$$\begin{split} P_{\text{LR-TMMSE}}(\{N_d\}, D, I, K) = \\ I \left[\sum_{d=1}^{D} \underbrace{R(D-1)NK + N_d^2K + N_dK}_{\text{statistics estimation}} + \underbrace{O(N_d^3)}_{\text{filtering}} + \underbrace{N_d^2}_{\text{filtering}} \right] \end{split}$$

- I: iterations number
- Tensor overhead!

- N: number of antennas
- *K*: number of snapshots (covariance matrix estimation)
- MMSE filter

$$P_{\text{MMSE}}(N,K) = \underbrace{N^2K + NK}_{\text{statistics estimation}} + \underbrace{O(N^3)}_{O(N^3)} + \underbrace{N^2}_{\text{filtering}}$$

LR-TMMSE filter

$$\begin{split} P_{\text{LR-TMMSE}}(\{N_d\}, D, I, K) = \\ I \left[\sum_{d=1}^{D} \underbrace{R(D-1)NK + N_d^2K + N_dK}_{\text{statistics estimation}} + \underbrace{O(N_d^3)}_{\text{filtering}} + \underbrace{N_d^2}_{\text{filtering}} \right] \end{split}$$

- I: iterations number
- Tensor overhead!

- N: number of antennas
- K: number of snapshots (covariance matrix estimation)
- MMSE filter

$$P_{\text{MMSE}}(N,K) = \underbrace{N^2K + NK}_{\text{statistics estimation}} + \underbrace{O(N^3)}_{O(N^3)} + \underbrace{N^2}_{\text{filtering}}$$

LR-TMMSE filter

$$\begin{split} P_{\text{LR-TMMSE}}(\{N_d\}, D, I, K) = \\ I \left[\sum_{d=1}^{D} \underbrace{R(D-1)NK + N_d^2K + N_dK}_{\text{statistics estimation}} + \underbrace{O(N_d^3)}_{O(N_d^3)} + \underbrace{N_d^2}_{\text{filtering}} \right] \end{split}$$

- I: iterations number
- Tensor overhead!

MMSE	LR-TMMSE $(R = 1)$
LR-TMMSE ($R = 2$)	LR-TMMSE ($R = 3$)

 MMSE	LR-TMMSE $(R = 1)$
LR-TMMSE ($R = 2$)	LR-TMMSE ($R = 3$)

Number N of antennas

K = 600, I = 2, D = 3

Number N of antennas

K = 600, I = 2, D = 3

 $\blacksquare \blacksquare MMSE \qquad \blacksquare LR-TMMSE (R = 1)$ $\blacksquare LR-TMMSE (R = 2) \qquad LR-TMMSE (R = 3)$

Number N of antennas

K = 600, I = 2, D = 3

N = 512, I = 2, R = 3

Training sequence length K

$$N = 512, I = 2, R = 3$$

Number N of antennas

K = 600, I = 2, D = 3

Number *K* of snapshots

SINR(
$$w$$
) = $\frac{w^{H}R_{xx}w}{w^{H}(R_{ii}+R_{bb})w}$
(28)
N = 512 antennas
SNR = 20 dB
Filter order D = 3
 U = 4 users
 L = 4 paths
 L = 4 paths

Number *K* of snapshots

SINR(
$$w$$
) = $\frac{w^{H}R_{xx}w}{w^{H}(R_{ii} + R_{bb})w}$
(28)
N = 512 antennas
SNR = 20 dB
Filter order $D = 3$
 $U = 4$ users
 $L = 4$ paths
 $L = 4$ paths

Number K of snapshots

SINR(
$$w$$
) = $\frac{w^{H}R_{xx}w}{w^{H}(R_{ii} + R_{bb})w}$
(28)
N = 512 antennas
SNR = 20 dB
Filter order $D = 3$
 $U = 4$ users
 $L = 4$ paths
 $L = 4$ paths
 $U = 4$ users

Number K of snapshots

$$SINR(w) = \frac{w^{H}R_{xx}w}{w^{H}(R_{ii} + R_{bb})w}$$
(28)
$$N = 512 \text{ antennas}$$

$$SNR = 20 \text{ dB}$$
Filter order $D = 3$

$$U = 4 \text{ users}$$

$$L = 4 \text{ paths}$$

$$SINR(w) = \frac{w^{H}R_{xx}w}{w^{H}(R_{ii} + R_{bb})w}$$
(28)
$$N = 512 \text{ antennas}$$

$$SNR = 20 \text{ dB}$$
Filter order $D = 3$

$$U = 4 \text{ users}$$

$$L = 4 \text{ paths}$$

Part II: MmWave Massive MIMO Transceiver Design

Related publications

- IEEE Journal of Selected Topics in Signal Processing, v. 12, n. 2, p. 298–312, May, 2018;
 - IEEE Access (under revision)

Massive MIMO Precoding – Energy Efficiency DAC PA DAC Digital Digital RF DAC DAC PA precoder precoder precoder DAC (a) Fully-digital (b) Hybrid analog/digital

Large-scale antenna arrays at transmitting side

- Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques

Massive MIMO Precoding – Energy Efficiency DAC PA DAC Digital Digital RF DAC DAC PA precoder precoder precoder DAC (c) Fully-digital (d) Hybrid analog/digital

Large-scale antenna arrays at transmitting side

- Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques

Large-scale antenna arrays at transmitting side

- Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques

Large-scale antenna arrays at transmitting side

- · Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques

Large-scale antenna arrays at transmitting side

- Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques
Massive MIMO Precoding – Energy Efficiency

Large-scale antenna arrays at transmitting side

- Challenges: power consumption, energy efficiency
- Fully digital vs. hybrid A/D (fully- and partially-connected)
- Low-res. data converters \rightarrow pow. amps. close to saturation (more efficient)

Contributions

- Definition of the quantized hybrid precoding problem
- Assessment of performance losses due to hardware and quantization
- Presentation of novel hybrid A/D precoding techniques

- Single-user mmWave MIMO system with $N_r \times N_t$ antennas
- Received signal:

$$oldsymbol{y} = oldsymbol{H}oldsymbol{x} + oldsymbol{n} \in \mathbb{C}^{N_r}$$
 (29)

• Transmitted signal with DAC and RF losses:

$$oldsymbol{x} = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{F}_{\mathsf{RF}}\mathcal{Q}_b(oldsymbol{F}_{\mathsf{BB}}s) = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{ ilde{x}} \in \mathbb{C}^{N_t},$$
 (30)

 $L_{\mathsf{RF}} \mathsf{RF}$ losses, $L_t \mathsf{TX} \mathsf{RF}$ chains, $F_{\mathsf{RF}} \in \mathbb{C}^{N_t \times L_t}$ and $F_{\mathsf{BB}} \in \mathbb{C}^{L_t \times N_s}$ analog and baseband precoders, resp.

$$\boldsymbol{H} = \sqrt{\frac{N_t N_r}{L}} \sum_{\ell=1}^{L} \alpha_\ell \boldsymbol{a}_r \left(\boldsymbol{\phi}_\ell^{(r)}, \boldsymbol{\theta}_\ell^{(r)} \right) \boldsymbol{a}_t \left(\boldsymbol{\phi}_\ell^{(t)}, \boldsymbol{\theta}_\ell^{(t)} \right)^{\mathsf{H}} \in \mathbb{C}^{N_r \times N_t},$$

- Single-user mmWave MIMO system with $N_r \times N_t$ antennas
- Received signal:

$$\boldsymbol{y} = \boldsymbol{H}\boldsymbol{x} + \boldsymbol{n} \in \mathbb{C}^{N_r}$$
 (29)

• Transmitted signal with DAC and RF losses:

$$oldsymbol{x} = rac{1}{\sqrt{L_{\mathsf{RF}}}} oldsymbol{F}_{\mathsf{RF}} \mathcal{Q}_b(oldsymbol{F}_{\mathsf{BB}} s) = rac{1}{\sqrt{L_{\mathsf{RF}}}} oldsymbol{ ilde{x}} \in \mathbb{C}^{N_t},$$
 (30)

 $L_{\mathsf{RF}} \mathsf{RF}$ losses, $L_t \mathsf{TX} \mathsf{RF}$ chains, $F_{\mathsf{RF}} \in \mathbb{C}^{N_t \times L_t}$ and $F_{\mathsf{BB}} \in \mathbb{C}^{L_t \times N_s}$ analog and baseband precoders, resp.

$$\boldsymbol{H} = \sqrt{\frac{N_t N_r}{L}} \sum_{\ell=1}^{L} \alpha_\ell \boldsymbol{a}_r \left(\boldsymbol{\phi}_\ell^{(r)}, \boldsymbol{\theta}_\ell^{(r)} \right) \boldsymbol{a}_t \left(\boldsymbol{\phi}_\ell^{(t)}, \boldsymbol{\theta}_\ell^{(t)} \right)^{\mathsf{H}} \in \mathbb{C}^{N_r \times N_t},$$

- Single-user mmWave MIMO system with $N_r \times N_t$ antennas
- Received signal:

$$\boldsymbol{y} = \boldsymbol{H}\boldsymbol{x} + \boldsymbol{n} \in \mathbb{C}^{N_r} \tag{29}$$

• Transmitted signal with DAC and RF losses:

$$oldsymbol{x} = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{F}_{\mathsf{RF}}\mathcal{Q}_b(oldsymbol{F}_{\mathsf{BB}}oldsymbol{s}) = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{ ilde{x}} \in \mathbb{C}^{N_t},$$
 (30)

 $L_{\mathsf{RF}} \mathsf{RF}$ losses, $L_t \mathsf{TX} \mathsf{RF}$ chains, $F_{\mathsf{RF}} \in \mathbb{C}^{N_t \times L_t}$ and $F_{\mathsf{BB}} \in \mathbb{C}^{L_t \times N_s}$ analog and baseband precoders, resp.

$$\boldsymbol{H} = \sqrt{\frac{N_t N_r}{L}} \sum_{\ell=1}^{L} \alpha_\ell \boldsymbol{a}_r \left(\boldsymbol{\phi}_\ell^{(r)}, \boldsymbol{\theta}_\ell^{(r)} \right) \boldsymbol{a}_t \left(\boldsymbol{\phi}_\ell^{(t)}, \boldsymbol{\theta}_\ell^{(t)} \right)^{\mathsf{H}} \in \mathbb{C}^{N_r \times N_t},$$

- Single-user mmWave MIMO system with $N_r \times N_t$ antennas
- Received signal:

$$\boldsymbol{y} = \boldsymbol{H}\boldsymbol{x} + \boldsymbol{n} \in \mathbb{C}^{N_r} \tag{29}$$

• Transmitted signal with DAC and RF losses:

$$oldsymbol{x} = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{F}_{\mathsf{RF}}\mathcal{Q}_b(oldsymbol{F}_{\mathsf{BB}}oldsymbol{s}) = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{ ilde{x}} \in \mathbb{C}^{N_t},$$
 (30)

 $L_{\mathsf{RF}} \mathsf{RF}$ losses, $L_t \mathsf{TX} \mathsf{RF}$ chains, $F_{\mathsf{RF}} \in \mathbb{C}^{N_t \times L_t}$ and $F_{\mathsf{BB}} \in \mathbb{C}^{L_t \times N_s}$ analog and baseband precoders, resp.

$$\boldsymbol{H} = \sqrt{\frac{N_t N_r}{L}} \sum_{\ell=1}^{L} \alpha_\ell \boldsymbol{a}_r \left(\phi_\ell^{(r)}, \theta_\ell^{(r)} \right) \boldsymbol{a}_t \left(\phi_\ell^{(t)}, \theta_\ell^{(t)} \right)^{\mathsf{H}} \in \mathbb{C}^{N_r \times N_t},$$
(31)

• Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $-H' = H_{eq} \Upsilon_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $H_{eq} = HF_{RF} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\Upsilon_b = \sqrt{1 \rho_b} I_M$ is the DAC distortion matrix
- $oldsymbol{-} oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}}oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{PF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
 (33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

• Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $m{H}'=m{H}_{\mathsf{eq}} \Upsilon_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $H_{eq} = HF_{RF} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\Upsilon_b = \sqrt{1 \rho_b} I_M$ is the DAC distortion matrix
- $oldsymbol{-} oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}}oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{PF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
 (33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $\mathbf{H}' = \mathbf{H}_{\mathsf{eq}} \mathbf{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $oldsymbol{H}_{\mathsf{eq}} = oldsymbol{H} oldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\mathbf{\Upsilon}_b = \sqrt{1
 ho_b} I_M$ is the DAC distortion matrix
- $oldsymbol{-} oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}}oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{PF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
 (33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $m{H}' = m{H}_{\mathsf{eq}} m{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $oldsymbol{H}_{\mathsf{eq}} = oldsymbol{H} oldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\boldsymbol{\Upsilon}_b = \sqrt{1ho_b} \boldsymbol{I}_M$ is the DAC distortion matrix
- $oldsymbol{-} oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}}oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{PF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
 (33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

where

- $m{H}' = m{H}_{\mathsf{eq}} m{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $oldsymbol{H}_{\mathsf{eq}} = oldsymbol{H} oldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\boldsymbol{\Upsilon}_b = \sqrt{1ho_b} \boldsymbol{I}_M$ is the DAC distortion matrix
- $oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}} oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise

• Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{P}\mathsf{F}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
(33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $m{H}' = m{H}_{\mathsf{eq}} m{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $oldsymbol{H}_{\mathsf{eq}} = oldsymbol{H} oldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\mathbf{\Upsilon}_b = \sqrt{1ho_b} \boldsymbol{I}_M$ is the DAC distortion matrix
- $oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}} oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{P}\mathsf{F}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
(33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise → whitening filter

• Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $\mathbf{H}' = \mathbf{H}_{\mathsf{eq}} \mathbf{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $\boldsymbol{H}_{\mathsf{eq}} = \boldsymbol{H} \boldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\mathbf{\Upsilon}_b = \sqrt{1ho_b} \boldsymbol{I}_M$ is the DAC distortion matrix
- $oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}} oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of *n*_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{RF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
(33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)

• Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $m{H}' = m{H}_{\mathsf{eq}} m{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $oldsymbol{H}_{\mathsf{eq}} = oldsymbol{H} oldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\mathbf{\Upsilon}_b = \sqrt{1ho_b} \boldsymbol{I}_M$ is the DAC distortion matrix
- $oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}} oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of n_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{RF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
(33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)

• Proposed quantized signal model

$$oldsymbol{y} pprox rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}'oldsymbol{u} + oldsymbol{n}_G = rac{1}{\sqrt{L_{\mathsf{RF}}}}oldsymbol{H}_{\mathsf{eq}}oldsymbol{\Upsilon}_boldsymbol{F}_{\mathsf{BB}}oldsymbol{s} + oldsymbol{n}_G.$$
 (32)

- $m{H}' = m{H}_{\mathsf{eq}} m{\Upsilon}_b \in \mathbb{C}^{N_r imes M}$ stands for channel + DAC distortion matrix
- $\boldsymbol{H}_{\mathsf{eq}} = \boldsymbol{H} \boldsymbol{F}_{\mathsf{RF}} \in \mathbb{C}^{N_r imes M}$ denotes the equivalent channel
- $\mathbf{\Upsilon}_b = \sqrt{1ho_b} \mathbf{I}_M$ is the DAC distortion matrix
- $oldsymbol{u} = oldsymbol{F}_{\mathsf{BB}} oldsymbol{s} \in \mathbb{C}^M$ baseband-precoded signal
- n_G additive noise
- Covariance matrix of *n*_G is given by

$$\boldsymbol{R}_{n_G n_G} = \frac{1}{L_{\mathsf{RF}}} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{R}_{ee} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} + \boldsymbol{R}_{nn} \in \mathbb{C}^{N_r \times N_r}$$
(33)

$$\boldsymbol{R}_{ee} = \rho_b \operatorname{diag}(\boldsymbol{R}_{uu}) \in \mathbb{C}^{M \times M}$$
(34)

- Noise covariance matrix depends on the input signal (causality problem?)
- Colored noise \rightarrow whitening filter

Problem Formulation

Assuming perfect channel state information (CSI) and whitening:

 $\begin{array}{ll} \underset{\mathbf{F}_{\mathsf{RF}}, \mathbf{F}_{\mathsf{BB}}}{\text{maximize}} & \log_2 \det \left(\mathbf{I}_{N_r} + \frac{1-\rho_b}{L_{\mathsf{RF}}} \mathbf{R}_{n_G n_G}^{-1/2} \mathbf{H} \mathbf{F}_{\mathsf{RF}} \mathbf{F}_{\mathsf{BB}} \mathbf{F}_{\mathsf{BB}}^{\mathsf{H}} \mathbf{F}_{\mathsf{RF}}^{\mathsf{H}} \mathbf{H}^{\mathsf{H}} \mathbf{R}_{n_G n_G}^{-1/2, \mathsf{H}} \right) \\ \text{subject to} & [\mathbf{F}_{\mathsf{RF}}]_{u,v} \in \mathcal{F}_{\mathsf{RF}}, \, \forall u \forall v, \, \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (35)

where $ilde{m{x}} = m{F}_{\mathsf{RF}} m{\Upsilon}_b m{u} + m{F}_{\mathsf{RF}} m{e} \in \mathbb{C}^{N_t}$

- It is general to model the (un)quantized hybrid and fully-digital precoding problems
- Sub-optimal solution: optimize F_{RF} and F_{BB} independently

Analog Precoder FRF Design

- Fully-connected: alternating projection method²
- Partially-connected: maximum eigenmode transmission by power method

² J. A. Tropp et al, "Designing structured tight frames via an alternating projection method," IEEE Transactions on Information Theory, v. 51, n. 1, p. 188-209, 2005.

Problem Formulation

Assuming perfect channel state information (CSI) and whitening:

 $\begin{array}{ll} \underset{\mathbf{F}_{\mathsf{RF}}, \mathbf{F}_{\mathsf{BB}}}{\text{maximize}} & \log_2 \det \left(\mathbf{I}_{N_r} + \frac{1-\rho_b}{L_{\mathsf{RF}}} \mathbf{R}_{n_G n_G}^{-1/2} \mathbf{H} \mathbf{F}_{\mathsf{RF}} \mathbf{F}_{\mathsf{BB}} \mathbf{F}_{\mathsf{BF}}^{\mathsf{H}} \mathbf{F}_{\mathsf{RF}}^{\mathsf{H}} \mathbf{H}^{\mathsf{H}} \mathbf{R}_{n_G n_G}^{-1/2, \mathsf{H}} \right) \\ \text{subject to} & [\mathbf{F}_{\mathsf{RF}}]_{u,v} \in \mathcal{F}_{\mathsf{RF}}, \, \forall u \forall v, \, \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (35)

where $ilde{m{x}} = m{F}_{\mathsf{RF}} m{\Upsilon}_b m{u} + m{F}_{\mathsf{RF}} m{e} \in \mathbb{C}^{N_t}$

- It is general to model the (un)quantized hybrid and fully-digital precoding problems
- Sub-optimal solution: optimize F_{RF} and F_{BB} independently

Analog Precoder FRF Design

- Fully-connected: alternating projection method²
- Partially-connected: maximum eigenmode transmission by power method

² J. A. Tropp et al, "Designing structured tight frames via an alternating projection method," IEEE Transactions on Information Theory, v. 51, n. 1, p. 188-209, 2005.

Problem Formulation

Assuming perfect channel state information (CSI) and whitening:

 $\begin{array}{ll} \underset{\mathbf{F}_{\mathsf{RF}}, \mathbf{F}_{\mathsf{BB}}}{\text{maximize}} & \log_2 \det \left(\mathbf{I}_{N_r} + \frac{1-\rho_b}{L_{\mathsf{RF}}} \mathbf{R}_{n_G n_G}^{-1/2} \mathbf{H} \mathbf{F}_{\mathsf{RF}} \mathbf{F}_{\mathsf{BB}} \mathbf{F}_{\mathsf{BF}}^{\mathsf{H}} \mathbf{F}_{\mathsf{RF}}^{\mathsf{H}} \mathbf{H}^{\mathsf{H}} \mathbf{R}_{n_G n_G}^{-1/2, \mathsf{H}} \right) \\ \text{subject to} & [\mathbf{F}_{\mathsf{RF}}]_{u,v} \in \mathcal{F}_{\mathsf{RF}}, \, \forall u \forall v, \, \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (35)

where $ilde{m{x}} = m{F}_{\mathsf{RF}} m{\Upsilon}_b m{u} + m{F}_{\mathsf{RF}} m{e} \in \mathbb{C}^{N_t}$

- It is general to model the (un)quantized hybrid and fully-digital precoding problems
- Sub-optimal solution: optimize F_{RF} and F_{BB} independently

Analog Precoder **F**_{RF} Design

- Fully-connected: alternating projection method²
- Partially-connected: maximum eigenmode transmission by power method

² J. A. Tropp et al, "Designing structured tight frames via an alternating projection method," IEEE Transactions on Information Theory, v. 51, n. 1, p. 188-209, 2005.

Problem Formulation

Assuming perfect channel state information (CSI) and whitening:

 $\begin{array}{ll} \underset{\mathbf{F}_{\mathsf{RF}}, \mathbf{F}_{\mathsf{BB}}}{\text{maximize}} & \log_2 \det \left(\mathbf{I}_{N_r} + \frac{1-\rho_b}{L_{\mathsf{RF}}} \mathbf{R}_{n_G n_G}^{-1/2} \mathbf{H} \mathbf{F}_{\mathsf{RF}} \mathbf{F}_{\mathsf{BB}} \mathbf{F}_{\mathsf{BF}}^{\mathsf{H}} \mathbf{H}^{\mathsf{H}} \mathbf{R}_{n_G n_G}^{-1/2, \mathsf{H}} \right) \\ \text{subject to} & [\mathbf{F}_{\mathsf{RF}}]_{u,v} \in \mathcal{F}_{\mathsf{RF}}, \forall u \forall v, \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (35)

where $ilde{m{x}} = m{F}_{\mathsf{RF}} m{\Upsilon}_b m{u} + m{F}_{\mathsf{RF}} m{e} \in \mathbb{C}^{N_t}$

- It is general to model the (un)quantized hybrid and fully-digital precoding problems
- Sub-optimal solution: optimize F_{RF} and F_{BB} independently

Analog Precoder FRF Design

- Fully-connected: alternating projection method²
- Partially-connected: maximum eigenmode transmission by power method

² J. A. Tropp et al, "Designing structured tight frames via an alternating projection method," IEEE Transactions on Information Theory, v. 51, n. 1, p. 188-209, 2005.

Baseband Precoder F_{BB} Design

• Design baseband filter as optimal precoder in infinite-resolution DAC scenarios

 $\begin{array}{l} \underset{\boldsymbol{F}_{\mathsf{BB}}}{\operatorname{maximize}} \quad \log_2 \det \left(\boldsymbol{I}_{N_r} + \boldsymbol{R}_{nn}^{-1} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{F}_{\mathsf{BB}} \boldsymbol{F}_{\mathsf{BB}}^{\mathsf{H}} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} \right) \\ \text{subject to} \quad \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (36)

- Avoids causality problem in total noise covariance matrix
- Consider the SVD of the equivalent channel: $H_{eq} = U \Sigma V^{H}$
- SVD precoding + waterfilling power allocation:

$$F_{\mathsf{BB}} = rac{\sqrt{P_{\mathsf{max}}}}{\|F_{\mathsf{BF}}Q\|_{\mathrm{F}}}Q$$
 (37)

$$\boldsymbol{Q} = \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \in \mathbb{C}^{M \times N_s}$$
(38)

Baseband Precoder F_{BB} Design

• Design baseband filter as optimal precoder in infinite-resolution DAC scenarios

 $\begin{array}{ll} \underset{F_{\mathsf{BB}}}{\operatorname{maximize}} & \log_2 \det \left(I_{N_r} + R_{nn}^{-1} H_{\mathsf{eq}} F_{\mathsf{BB}} F_{\mathsf{BB}}^{\mathsf{H}} H_{\mathsf{eq}}^{\mathsf{H}} \right) \\ \text{subject to} & \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$ (36)

- Avoids causality problem in total noise covariance matrix
- Consider the SVD of the equivalent channel: $H_{eq} = U \Sigma V^{H}$
- SVD precoding + waterfilling power allocation:

$$F_{\mathsf{BB}} = rac{\sqrt{P_{\mathsf{max}}}}{\|F_{\mathsf{BF}}Q\|_{\mathrm{F}}}Q$$
 (37)

$$\boldsymbol{Q} = \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \in \mathbb{C}^{M \times N_s}$$
 (38)

Baseband Precoder F_{BB} Design

• Design baseband filter as optimal precoder in infinite-resolution DAC scenarios

$$\begin{array}{ll} \underset{\boldsymbol{F}_{\mathsf{BB}}}{\operatorname{maximize}} & \log_2 \det \left(\boldsymbol{I}_{N_r} + \boldsymbol{R}_{nn}^{-1} \boldsymbol{H}_{\mathsf{eq}} \boldsymbol{F}_{\mathsf{BB}} \boldsymbol{F}_{\mathsf{BB}}^{\mathsf{H}} \boldsymbol{H}_{\mathsf{eq}}^{\mathsf{H}} \right) \\ \underset{\text{subject to}}{\operatorname{E}} & \mathbb{E} \left[\| \tilde{\boldsymbol{x}} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$$
(36)

- Avoids causality problem in total noise covariance matrix
- Consider the SVD of the equivalent channel: $H_{
 m eq} = U \Sigma V^{
 m H}$
- SVD precoding + waterfilling power allocation:

$$F_{\mathsf{BB}} = \frac{\sqrt{P_{\mathsf{max}}}}{\|F_{\mathsf{RF}}Q\|_{\mathsf{F}}}Q\tag{37}$$

$$\boldsymbol{Q} = \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \in \mathbb{C}^{M \times N_s}$$
(38)

Baseband Precoder F_{BB} Design

• Design baseband filter as optimal precoder in infinite-resolution DAC scenarios

$$\begin{array}{ll} \underset{F_{\mathsf{BB}}}{\operatorname{maximize}} & \log_2 \det \left(I_{N_r} + R_{nn}^{-1} H_{\mathsf{eq}} F_{\mathsf{BB}} F_{\mathsf{BB}}^{\mathsf{H}} H_{\mathsf{eq}}^{\mathsf{H}} \right) \\ \underset{subject to}{\operatorname{to}} & \mathbb{E} \left[\| \tilde{x} \|_2^2 \right] \leq P_{\mathsf{max}}. \end{array}$$
(36)

- Avoids causality problem in total noise covariance matrix
- Consider the SVD of the equivalent channel: $H_{
 m eq} = U \Sigma V^{
 m H}$
- SVD precoding + waterfilling power allocation:

$$\boldsymbol{F}_{\mathsf{BB}} = \frac{\sqrt{P_{\mathsf{max}}}}{\|\boldsymbol{F}_{\mathsf{RF}}\boldsymbol{Q}\|_{\mathsf{F}}}\boldsymbol{Q}$$
(37)

$$\boldsymbol{Q} = \boldsymbol{V} \boldsymbol{\Lambda}^{1/2} \in \mathbb{C}^{M \times N_s}$$
 (38)

Power Consumption and Loss Models

Power Consumption Formulas

- Fully-digital: $P_{D} = P_{LO} + P_{PA} + N_t [2P_{DAC}(b_{DAC}, F_s) + P_{RF}]$
- Hybrid A/D fully-connected: $P_{\text{FPSN}} = P_{\text{LO}} + P_{\text{PA}} + L_t [2P_{\text{DAC}}(b_{\text{DAC}}, F_s) + P_{\text{RF}}] + N_t L_t P_{\text{PS}}(b_{\text{PS}})$
- Hybrid A/D partially-connected: $P_{\text{PPSN}} = P_{\text{LO}} + P_{\text{PA}} + L_t [2P_{\text{DAC}}(b_{\text{DAC}}, F_s) + P_{\text{RF}}] + N_a L_t P_{\text{PS}}(b_{\text{PS}})$
- Power amplifier: $P_{PA} = P_x/\eta$, for efficiency η and

$$P_x = \frac{1}{L_{\mathsf{RF}}} \left[(1 - \rho_b) \| \boldsymbol{F}_{\mathsf{RF}} \boldsymbol{F}_{\mathsf{BB}} \|_F^2 + \operatorname{Tr}(\boldsymbol{F}_{\mathsf{RF}} \boldsymbol{R}_{ee} \boldsymbol{F}_{\mathsf{RF}}^{\mathsf{H}}) \right]$$

RF Devices Loss

- 2-way pow. div: $L_D(N_t)$
- 2-way pow. comb: $L_{C}(L_t)$
- Phase-shifter (passive or active): *L*_{PS}

Phase-Shifting Network Loss

•
$$L_{\mathsf{RF}}^{\mathsf{FPSN}} = L_{\mathsf{D}}(N_t) L_{\mathsf{PS}} L_{\mathsf{C}}(L_t).$$

•
$$L_{\mathsf{RF}}^{\mathsf{PPSN}} = L_{\mathsf{D}}(N_a)L_{\mathsf{PS}}.$$

Power Consumption and Loss Models

Power Consumption Formulas

- Fully-digital: $P_{D} = P_{LO} + P_{PA} + N_t [2P_{DAC}(b_{DAC}, F_s) + P_{RF}]$
- Hybrid A/D fully-connected: $P_{\text{FPSN}} = P_{\text{LO}} + P_{\text{PA}} + L_t[2P_{\text{DAC}}(b_{\text{DAC}},F_s) + P_{\text{RF}}] + N_t L_t P_{\text{PS}}(b_{\text{PS}})$
- Hybrid A/D partially-connected: $P_{\text{PPSN}} = P_{\text{LO}} + P_{\text{PA}} + L_t [2P_{\text{DAC}}(b_{\text{DAC}}, F_s) + P_{\text{RF}}] + N_a L_t P_{\text{PS}}(b_{\text{PS}})$
- Power amplifier: $P_{\mathsf{PA}} = P_x/\eta$, for efficiency η and

$$P_x = \frac{1}{L_{\mathsf{RF}}} \left[(1 - \rho_b) \| \boldsymbol{F}_{\mathsf{RF}} \boldsymbol{F}_{\mathsf{BB}} \|_F^2 + \operatorname{Tr}(\boldsymbol{F}_{\mathsf{RF}} \boldsymbol{R}_{ee} \boldsymbol{F}_{\mathsf{RF}}^{\mathsf{H}}) \right]$$

RF Devices Loss

- 2-way pow. div: $L_{\mathsf{D}}(N_t)$
- 2-way pow. comb: $L_{C}(L_t)$
- Phase-shifter (passive or active): *L*_{PS}

Phase-Shifting Network Loss

- $L_{\mathsf{RF}}^{\mathsf{FPSN}} = L_{\mathsf{D}}(N_t)L_{\mathsf{PS}}L_{\mathsf{C}}(L_t).$
- $L_{\mathsf{RF}}^{\mathsf{PPSN}} = L_{\mathsf{D}}(N_a)L_{\mathsf{PS}}.$

Simulation Setup

- $N_t = 64$ and $N_r = 4$ antennas
- $L_t = 4 \text{ RF}$ chains
- $N_s = 4$ data streams
- L = 5 channel paths
- $P_{\max} = 1 \text{ W}$
- Phase shifter resolution: 5 bits
- DAC sampling frequency $F_s = 1 \text{ GHz}$
- Energy efficiency:

spectral efficiency [bit/J]

Phase shifter implementation

- Active: ↑ power consumption
 ↓ insertion loss
- Passive: ↓ power consumption ↑ insertion loss

Notation	Value
P _{PA}	$P_x/\eta, \eta = 27\%$
P _{PS}	$21.6;0\mathrm{mW}$
PLO	$22.5\mathrm{mW}$
P _H	$3 \mathrm{mW}$
P_{M}	$0.3\mathrm{mW}$
P_{LP}	$14\mathrm{mW}$
P_{RF}	$31.6\mathrm{mW}$
\bar{L}_{D}	$0.6\mathrm{dB}$
\bar{L}_{C}	$0.6\mathrm{dB}+3\mathrm{dB}$
L _{PS}	-2.3 ; $8.8\mathrm{dB}$

Considering RF hardware losses

Massive MIMO only at transmitter (base station)

Double-Sided Massive MIMO

Transceiver Design

Massive MIMO only at transmitter (base station)

Double-Sided Massive MIMO

Transceiver Design

Double-Sided Massive MIMO

- Why?
 - Potentially better performance than canonical massive MIMO
 - · Wireless backhauling, terahertz communications, among others
- Contributions
 - Low-complexity transceiver schemes with practical CSI requirements
 - Performance evaluation under different propagation conditions

Double-Sided Massive MIMO

- Why?
 - Potentially better performance than canonical massive MIMO
 - Wireless backhauling, terahertz communications, among others
- Contributions
 - Low-complexity transceiver schemes with practical CSI requirements
 - · Performance evaluation under different propagation conditions

System Model

Signal and Channel Models

Downlink operation, 1 BS (N_t antennas), U UEs (N_r antennas, each)

$$oldsymbol{y}_u = oldsymbol{W}_u^{\mathsf{H}} oldsymbol{H}_u oldsymbol{F}_u oldsymbol{s}_u + \sum_{\substack{j=1\ j
eq u}}^U oldsymbol{W}_u^{\mathsf{H}} oldsymbol{H}_u oldsymbol{F}_j oldsymbol{s}_j + oldsymbol{W}_u^{\mathsf{H}} oldsymbol{b}_u \in \mathbb{C}^{N_s},$$
 (39)

$$\boldsymbol{H}_{u} = \sqrt{\frac{N_{t}N_{r}}{L}} \sum_{\ell=1}^{L} \alpha_{\ell,u} \boldsymbol{a}_{r,u} \left(\phi_{\ell}^{(r,u)}, \theta_{\ell}^{(r,u)} \right) \boldsymbol{a}_{t,u}^{\mathsf{T}} \left(\phi_{\ell}^{(t,u)}, \theta_{\ell}^{(t,u)} \right)$$
(40)

Multi-Layer Filtering

Two layers: outer and inner layers

• $F_u = \gamma_u F_{o,u} F_{i,u}$, $F_{o,u} \in \mathbb{C}^{N_t \times M_t}$ and $\gamma_u F_{i,u} \in \mathbb{C}^{M_t \times N_s}$

• $W_u = W_{o,u}W_{i,u}$, $W_{o,u} \in \mathbb{C}^{N_r \times M_r}$ and $W_{i,u} \in \mathbb{C}^{M_r \times N_s}$

Each layer, one objective:

- Outer layer: increase SNR
- Inner layer: cancel multi-user interference

System Model

Signal and Channel Models

Downlink operation, 1 BS (N_t antennas), U UEs (N_r antennas, each)

$$\boldsymbol{y}_{u} = \boldsymbol{W}_{u}^{\mathsf{H}} \boldsymbol{H}_{u} \boldsymbol{F}_{u} \boldsymbol{s}_{u} + \sum_{\substack{j=1\\j\neq u}}^{U} \boldsymbol{W}_{u}^{\mathsf{H}} \boldsymbol{H}_{u} \boldsymbol{F}_{j} \boldsymbol{s}_{j} + \boldsymbol{W}_{u}^{\mathsf{H}} \boldsymbol{b}_{u} \in \mathbb{C}^{N_{s}},$$
(39)

$$\boldsymbol{H}_{u} = \sqrt{\frac{N_{t}N_{r}}{L}} \sum_{\ell=1}^{L} \alpha_{\ell,u} \boldsymbol{a}_{r,u} \left(\phi_{\ell}^{(r,u)}, \theta_{\ell}^{(r,u)} \right) \boldsymbol{a}_{t,u}^{\mathsf{T}} \left(\phi_{\ell}^{(t,u)}, \theta_{\ell}^{(t,u)} \right)$$
(40)

Multi-Layer Filtering

Two layers: outer and inner layers

• $F_u = \gamma_u F_{\mathsf{o}, u} F_{\mathsf{i}, u}, F_{\mathsf{o}, u} \in \mathbb{C}^{N_t \times M_t} \text{ and } \gamma_u F_{\mathsf{i}, u} \in \mathbb{C}^{M_t \times N_s}$

•
$$W_u = W_{o,u}W_{i,u}, W_{o,u} \in \mathbb{C}^{N_r imes M_r}$$
 and $W_{i,u} \in \mathbb{C}^{M_r imes N_s}$

Each layer, one objective:

- Outer layer: increase SNR
- Inner layer: cancel multi-user interference

System model

Signal Model (inner filters and effective channels) Form low-dimensional effective channels!

$$\boldsymbol{H}_{\mathsf{eff},u,j} = \boldsymbol{W}_{\mathsf{o},u}^{\mathsf{H}} \boldsymbol{H}_{u} \boldsymbol{F}_{\mathsf{o},j} \in \mathbb{C}^{M_{r} \times M_{t}}, \quad \gamma_{u} = \frac{\sqrt{P_{t}/U}}{\|\boldsymbol{F}_{\mathsf{o},u} \boldsymbol{F}_{\mathsf{i},u}\|_{\mathrm{F}}}$$
(41)

$$\boldsymbol{y}_{u} = \gamma_{u} \boldsymbol{W}_{\mathbf{i},u}^{\mathsf{H}} \boldsymbol{H}_{\mathsf{eff},u} \boldsymbol{F}_{\mathbf{i},u} \boldsymbol{s}_{u} + \sum_{\substack{j=1\\j\neq u}}^{\circ} \gamma_{j} \boldsymbol{W}_{\mathbf{i},u}^{\mathsf{H}} \boldsymbol{H}_{\mathsf{eff},u,j} \boldsymbol{F}_{\mathbf{i},j} \boldsymbol{s}_{j} + \boldsymbol{W}_{\mathbf{i},u}^{\mathsf{H}} \boldsymbol{b}_{\mathsf{eff},u}$$
(42)

CSI Acquisition

First Stage: Outer Layer

CSI necessary for outer layer design

- Statistical CSI (uplink and downlink cov. matrices); or
- Partial CSI: path power and angles

Depend only on macroscopic channel parameters!

Second Stage: Inner Layer

- Estimate low-dimensional effective channels H_{eff,u,j}
- Example: classical MMSE estimators

Time Scales

- Macroscopic: update outer layers
- Microscopic: update inner layers (low complexity!)

CSI Acquisition

First Stage: Outer Layer

CSI necessary for outer layer design

- Statistical CSI (uplink and downlink cov. matrices); or
- Partial CSI: path power and angles

Depend only on macroscopic channel parameters!

Second Stage: Inner Layer

- Estimate low-dimensional effective channels H_{eff,u,j}
- Example: classical MMSE estimators

Time Scales

- Macroscopic: update outer layers
- Microscopic: update inner layers (low complexity!)

CSI Acquisition

First Stage: Outer Layer

CSI necessary for outer layer design

- Statistical CSI (uplink and downlink cov. matrices); or
- Partial CSI: path power and angles

Depend only on macroscopic channel parameters!

Second Stage: Inner Layer

- Estimate low-dimensional effective channels H_{eff,u,j}
- Example: classical MMSE estimators

Time Scales

- Macroscopic: update outer layers
- Microscopic: update inner layers (low complexity!)

Transceiver Schemes

- Obtain outer layer filters increase SNR
 - Covariance matrix eigenfilter (CME)
 - Power-dominant path selection (PPS)
 - Semi-orthogonal path selection (SPS)
- Form inner layer filters cancel multi-user interference out
 - Maximum Eigenmode Transmission (MET) Maximum Eigenmode Reception (MER)
 - MET–Block diagonalization (BD)
 - MET-MMSE
 - BD-MER

Transceiver Schemes

- Obtain outer layer filters increase SNR
 - Covariance matrix eigenfilter (CME)
 - Power-dominant path selection (PPS)
 - Semi-orthogonal path selection (SPS)
- Form inner layer filters cancel multi-user interference out
 - Maximum Eigenmode Transmission (MET) Maximum Eigenmode Reception (MER)
 - MET–Block diagonalization (BD)
 - MET-MMSE
 - BD–MER

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U = 1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U = 1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U = 1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U=1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U=1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U=1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

- Investigate multiplexing capabilities
- Achievable sum rate as figure of merit
- Channel conditions
 - Poor: L = 8 rays
 - Rich: L = 64 rays
- Outer layer simulations: effect of number of streams N_s on sum rate with single-user U=1
- Inner layer simulations: influence of number U of UEs on sum rate $\left(N_s=1\right)$
- Benchmark: single-layer equivalent, partial zero-forcing³
- Some parameters:
 - $N_t = N_r = 64$ antennas
 - Channel gains variance $\sigma_{\alpha}^2 = 1$
 - 1000 independent experiments

Part III: MmWave Channel Estimation with Synchronization Impairments

Related publications

- Proc. IEEE ICASSP 2019
- Wideband extension under preparation

MmWave Channel Estimation with Synchronization Impairments

- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation \rightarrow classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.
- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation \rightarrow classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.

- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation → classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.

- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation → classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.

- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation \rightarrow classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.

- High-quality oscillators in mmWave are expensive
- Carrier signal far from ideal
- Impairments:
 - Carrier frequency offset (CFO)
 - Phase noise (PN)
- Classical approach: compensate impairments prior to beamforming and channel estimation
- MmWave: low SNR operation \rightarrow classical methods may fail⁴
- Joint wideband mmWave channel parameters, PN and CFO estimation

⁴ N. J. Myers and R. W. Heath Jr. "Message passing-based joint CFO and channel estimation in mmWave systems with one-bit ADCs." IEEE Transactions on Wireless Communications, v. 18, v. 6, June 2019.

Time-Domain Protocol

- Sample period T_o
- Symbol period T_s : comprises N_o samples $\rightarrow T_s = N_o T_o$
- Block period T_b : comprises N_s symbols $\rightarrow T_b = N_s T_s$
- Frame period T_s : comprises N_b blocks $\rightarrow T_f = N_b T_b$

System Parameters

- $(N_t \times N_r)$ single-user MIMO system
- Transmission of N_p-length pilot sequences
- Transmit and receive codebooks of length M_t and M_r , respectively
- Single local oscillator at each end: Ω [rad/s]
- Phase Noise: $\phi_n = \phi_{n-1} + w_n$ (Wiener process)

Time-Domain Protocol

- Sample period T_o
- Symbol period T_s : comprises N_o samples $\rightarrow T_s = N_o T_o$
- Block period T_b : comprises N_s symbols $\rightarrow T_b = N_s T_s$
- Frame period T_s : comprises N_b blocks $\rightarrow T_f = N_b T_b$

System Parameters

- $(N_t \times N_r)$ single-user MIMO system
- Transmission of N_p-length pilot sequences
- Transmit and receive codebooks of length M_t and $M_r,$ respectively
- Single local oscillator at each end: Ω [rad/s]
- Phase Noise: $\phi_n = \phi_{n-1} + w_n$ (Wiener process)

Channel Model

Channel matrix at frame n_f and tap n_c

$$\boldsymbol{H}_{n_{f},n_{c}} = \sqrt{\frac{N_{t}N_{r}}{L}} \sum_{\ell=1}^{L} \alpha_{n_{f},\ell} g_{n_{c},\ell} \boldsymbol{a}_{r} \left(\boldsymbol{\phi}_{\ell}^{(r)}, \boldsymbol{\theta}_{\ell}^{(r)}\right) \boldsymbol{a}_{t}^{\mathsf{T}} \left(\boldsymbol{\phi}_{\ell}^{(t)}, \boldsymbol{\theta}_{\ell}^{(t)}\right) \in \mathbb{C}^{N_{r} \times N_{t}}$$

- $\alpha_{n_f,\ell}$ frame-variant complex channel path gain
- $g_{n_c,\ell} = g(n_c T_s \tau_\ell)$ effective pulse shaping function

Parameters Time-Scale

- PN: Sample scale ϕ_{n_o} , $n_o = 1, \dots, N_o$
- CFO: Block scale $\Omega \cdot n_b$, $n_b = 1, \ldots, N_b$
- Channel gains: Frame scale $\alpha_{n_f,\ell}$, $n_f = 1, \ldots, N_f$

Channel Model

Channel matrix at frame n_f and tap n_c

$$\boldsymbol{H}_{n_{f},n_{c}} = \sqrt{\frac{N_{t}N_{r}}{L}} \sum_{\ell=1}^{L} \alpha_{n_{f},\ell} g_{n_{c},\ell} \boldsymbol{a}_{r} \left(\boldsymbol{\phi}_{\ell}^{(r)}, \boldsymbol{\theta}_{\ell}^{(r)}\right) \boldsymbol{a}_{t}^{\mathsf{T}} \left(\boldsymbol{\phi}_{\ell}^{(t)}, \boldsymbol{\theta}_{\ell}^{(t)}\right) \in \mathbb{C}^{N_{r} \times N_{t}}$$

- $\alpha_{n_f,\ell}$ frame-variant complex channel path gain
- $g_{n_c,\ell} = g(n_c T_s \tau_\ell)$ effective pulse shaping function

Parameters Time-Scale

- PN: Sample scale ϕ_{n_o} , $n_o = 1, \ldots, N_o$
- CFO: Block scale $\Omega \cdot n_b$, $n_b = 1, \ldots, N_b$
- Channel gains: Frame scale $\alpha_{n_f,\ell}$, $n_f = 1, \ldots, N_f$

Received signal at sample n_o , symbol n_s , block n_b , frame n_f , filtered by transmit beamformer f_{m_t} and receive beamformer w_{m_r} :

$$y_{m_r,m_t,n_o,n_s,n_b,n_f} = e^{j(\Omega \cdot n_b + \phi_{n_o})} \sum_{n_c=0}^{N_c-1} \boldsymbol{w}_{m_r}^{\mathsf{H}} \boldsymbol{H}_{n_f,n_c} \boldsymbol{f}_{m_t} s_{n_s-n_c} + \boldsymbol{w}_{m_r}^{\mathsf{H}} \boldsymbol{b}_{m_t,n_b,n_f,n_s,n_o}$$

Received signal at sample n_o , symbol n_s , block n_b , frame n_f , filtered by transmit beamformer f_{m_t} and receive beamformer w_{m_r} :

$$y_{m_r,m_t,n_o,n_s,n_b,n_f} = e^{j(\Omega \cdot n_b + \phi_{n_o})} \sum_{n_c=0}^{N_c-1} \boldsymbol{w}_{m_r}^{\mathsf{H}} \boldsymbol{H}_{n_f,n_c} \boldsymbol{f}_{m_t} s_{n_s-n_c} + \boldsymbol{w}_{m_r}^{\mathsf{H}} \boldsymbol{b}_{m_t,n_b,n_f,n_s,n_o}$$

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\mathbf{\Omega} = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\mathbf{\Omega} = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \Gamma + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $oldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\mathbf{\Omega} = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \Gamma + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\mathbf{\Omega} = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b imes L} \in \mathbb{C}^{N_b imes L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\Omega = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \Gamma + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\Omega = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_{r} \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_{*}^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z},$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\Omega = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}.$ (45)

$$\mathcal{C} = \mathcal{I}_{6,L} \times_1 \mathbf{A}_r \times_2 \mathbf{A}_t^* \times_3 \mathbf{G} \times_4 \mathbf{\Phi} \times_5 \mathbf{\Omega} \times_6 \mathbf{\Gamma}$$
(43)

- $A_r \in \mathbb{C}^{N_r imes L}$ and $A_t \in \mathbb{C}^{N_t imes L}$ spatial signatures
- $\boldsymbol{G} \in \mathbb{C}^{N_c imes L}$ time signature
- $\Phi = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\phi_1}, \dots e^{j\phi_{N_o}}) \mathbf{1}_{N_o \times L} \in \mathbb{C}^{N_o \times L} \mathsf{PN}$ matrix (rank-1)
- $\Omega = \frac{1}{\sqrt{L}} \operatorname{Diag}(e^{j\Omega}, \dots, e^{j\Omega \cdot N_f}) \mathbf{1}_{N_b \times L} \in \mathbb{C}^{N_b \times L} \mathsf{CFO}$ matrix
- $\mathbf{\Gamma} \in \mathbb{C}^{N_f imes L}$ fading matrix

Received signal tensor

$$\mathcal{Y} = \mathcal{C} \times_1 \boldsymbol{W}^{\mathsf{H}} \times_2 \boldsymbol{F}^{\mathsf{T}} \times_3 \boldsymbol{S}^{\mathsf{T}} + \mathcal{Z}$$
(44)
= $\mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}.$ (45)

 $\mathcal{Y} = \mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}$

Steps

1. Factorize received signal tensor $\ensuremath{\mathcal{Y}}$ into CPD model

- 2. Solve permutation ambiguity
- Estimate the path angles and delays by solving sparse recovery problems

$$\begin{array}{ll} \underset{\boldsymbol{v}_{r}}{\operatorname{minimize}} & \|\boldsymbol{v}_{r}\|_{1} & (46) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(1)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{\Psi}_{r})] \boldsymbol{v}_{r}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{t}}{\operatorname{minimize}} & \|\boldsymbol{v}_{t}\|_{1} & (47) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(2)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{\Psi}_{t})] \boldsymbol{v}_{t}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{s}}{\operatorname{minimize}} & \|\boldsymbol{v}_{s}\|_{1} & (48) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(3)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{\Psi}_{s})] \boldsymbol{v}_{s}\|_{2} \leq \sigma, \end{array}$$

- 4. Estimate PN and CFO directly from the CPD factors
- 5. Estimate channel fading matrix as

$$\hat{\Gamma} = Y_{(6)} \left\{ \left[\Omega \diamond \Phi \diamond (S^{\mathsf{T}}G) \diamond (F^{\mathsf{T}}A_t^*) \diamond (W^{\mathsf{H}}A_r) \right]^{\mathsf{T}} \right\}^{\dagger}.$$
(49)

 $\mathcal{Y} = \mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}$

- 1. Factorize received signal tensor ${\mathcal Y}$ into CPD model
- 2. Solve permutation ambiguity
- Estimate the path angles and delays by solving sparse recovery problems

$$\begin{array}{ll} \underset{\boldsymbol{v}_{r}}{\min |\boldsymbol{v}_{r}} & \|\boldsymbol{v}_{r}\|_{1} & (46) \\ \text{subject to} & \|\boldsymbol{q}_{(1)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{\Psi}_{r})] \boldsymbol{v}_{r}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{t}}{\min |\boldsymbol{v}_{t}|} & \|\boldsymbol{v}_{t}\|_{1} & (47) \\ \text{subject to} & \|\boldsymbol{q}_{(2)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{\Psi}_{t})] \boldsymbol{v}_{t}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{s}}{\min |\boldsymbol{v}_{s}|} & \|\boldsymbol{v}_{s}\|_{1} & (48) \\ \text{subject to} & \|\boldsymbol{q}_{(3)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{\Psi}_{s})] \boldsymbol{v}_{s}\|_{2} \leq \sigma, \end{array}$$

- 4. Estimate PN and CFO directly from the CPD factors
- Estimate channel fading matrix as

$$\hat{\boldsymbol{\Gamma}} = \boldsymbol{Y}_{(6)} \left\{ \left[\boldsymbol{\Omega} \diamond \boldsymbol{\Phi} \diamond (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{G}) \diamond (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_{t}^{*}) \diamond (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_{r}) \right]^{\mathsf{T}} \right\}^{\dagger}.$$
(49)

 $\mathcal{Y} = \mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}$

- 1. Factorize received signal tensor ${\mathcal Y}$ into CPD model
- 2. Solve permutation ambiguity
- 3. Estimate the path angles and delays by solving sparse recovery problems

$$\begin{array}{ll} \underset{\boldsymbol{v}_{r}}{\operatorname{minimize}} & \|\boldsymbol{v}_{r}\|_{1} & (46) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(1)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{\Psi}_{r})] \boldsymbol{v}_{r}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{t}}{\operatorname{minimize}} & \|\boldsymbol{v}_{t}\|_{1} & (47) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(2)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{\Psi}_{t})] \boldsymbol{v}_{t}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{s}}{\operatorname{minimize}} & \|\boldsymbol{v}_{s}\|_{1} & (48) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(3)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{\Psi}_{s})] \boldsymbol{v}_{s}\|_{2} \leq \sigma, \end{array}$$

- 4. Estimate PN and CFO directly from the CPD factors
- Estimate channel fading matrix as

$$\hat{\Gamma} = \boldsymbol{Y}_{(6)} \left\{ \left[\boldsymbol{\Omega} \diamond \boldsymbol{\Phi} \diamond (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{G}) \diamond (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_{t}^{*}) \diamond (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_{r}) \right]^{\mathsf{T}} \right\}^{\dagger}.$$
(49)

 $\mathcal{Y} = \mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}$

- 1. Factorize received signal tensor ${\mathcal Y}$ into CPD model
- 2. Solve permutation ambiguity
- 3. Estimate the path angles and delays by solving sparse recovery problems

$$\begin{array}{ll} \underset{\boldsymbol{v}_{r}}{\operatorname{minimize}} & \|\boldsymbol{v}_{r}\|_{1} \\ \text{subject to} & \|\boldsymbol{q}_{(1)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{\Psi}_{r})] \boldsymbol{v}_{r}\|_{2} \leq \sigma, \\ \\ \underset{\boldsymbol{v}_{t}}{\operatorname{minimize}} & \|\boldsymbol{v}_{t}\|_{1} \\ \text{subject to} & \|\boldsymbol{q}_{(2)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{\Psi}_{t})] \boldsymbol{v}_{t}\|_{2} \leq \sigma, \\ \\ \\ \underset{\boldsymbol{v}_{s}}{\operatorname{minimize}} & \|\boldsymbol{v}_{s}\|_{1} \\ \\ \text{subject to} & \|\boldsymbol{q}_{(3)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{\Psi}_{s})] \boldsymbol{v}_{s}\|_{2} \leq \sigma, \end{array}$$

$$(46)$$

- 4. Estimate PN and CFO directly from the CPD factors
- Estimate channel fading matrix as

$$\hat{\boldsymbol{\Gamma}} = \boldsymbol{Y}_{(6)} \left\{ \left[\boldsymbol{\Omega} \diamond \boldsymbol{\Phi} \diamond (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{G}) \diamond (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_{t}^{*}) \diamond (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_{r}) \right]^{\mathsf{T}} \right\}^{\mathsf{T}}.$$
(49)

 $\mathcal{Y} = \mathcal{I}_{6,L} \times_1 \boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_r \times_2 \boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_t^* \times_3 \boldsymbol{S}^{\mathsf{T}} \boldsymbol{G} \times_4 \boldsymbol{\Phi} \times_5 \boldsymbol{\Omega} \times_6 \boldsymbol{\Gamma} + \mathcal{Z}$

- 1. Factorize received signal tensor ${\mathcal Y}$ into CPD model
- 2. Solve permutation ambiguity
- 3. Estimate the path angles and delays by solving sparse recovery problems

$$\begin{array}{ll} \underset{\boldsymbol{v}_{r}}{\operatorname{minimize}} & \|\boldsymbol{v}_{r}\|_{1} & (46) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(1)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{\Psi}_{r})] \boldsymbol{v}_{r}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{t}}{\operatorname{minimize}} & \|\boldsymbol{v}_{t}\|_{1} & (47) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(2)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{\Psi}_{t})] \boldsymbol{v}_{t}\|_{2} \leq \sigma, \\ \underset{\boldsymbol{v}_{s}}{\operatorname{minimize}} & \|\boldsymbol{v}_{s}\|_{1} & (48) \\ \operatorname{subject to} & \|\boldsymbol{q}_{(3)} - [\boldsymbol{I}_{L} \otimes (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{\Psi}_{s})] \boldsymbol{v}_{s}\|_{2} \leq \sigma, \end{array}$$

- 4. Estimate PN and CFO directly from the CPD factors
- 5. Estimate channel fading matrix as

$$\hat{\boldsymbol{\Gamma}} = \boldsymbol{Y}_{(6)} \left\{ \left[\boldsymbol{\Omega} \diamond \boldsymbol{\Phi} \diamond (\boldsymbol{S}^{\mathsf{T}} \boldsymbol{G}) \diamond (\boldsymbol{F}^{\mathsf{T}} \boldsymbol{A}_{t}^{*}) \diamond (\boldsymbol{W}^{\mathsf{H}} \boldsymbol{A}_{r}) \right]^{\mathsf{T}} \right\}^{\dagger}.$$
(49)

Figures of Merit

Angles, delays and CFO (L = 1)

NMSE
$$(x) = \sum_{\ell=1}^{L} \frac{|x_{\ell} - \hat{x}_{\ell}|^2}{|x_{\ell}|^2}$$
 (50)

Phase noise

NMSE
$$(\phi) = \sum_{n_o=1}^{N_o} \frac{|\phi_{n_o} - \hat{\phi}_{n_o}|^2}{|\phi_{n_o}|^2}$$
 (51)

Fading matrix

$$\mathsf{NMSE}(\mathbf{\Gamma}) = \frac{\|\mathbf{\Gamma} - \hat{\mathbf{\Gamma}}\|_{\mathrm{F}}^2}{\|\mathbf{\Gamma}\|_{\mathrm{F}}^2} \qquad (52)$$

Calculate NMSE for different codebook lengths and samples number $N_{o} \ensuremath{N_o}$

Parameter Setup

• $N_t = N_r = 16$ antennas

•
$$N_s = N_b = N_f = 2$$

- Sampling period $T_s = 0.1 \, \mu s$
- Carrier frequency 28 GHz
- 10 ppm CFO: 280 kHz
- 2000 independent trials

Figures of Merit

Angles, delays and CFO (L = 1)

NMSE
$$(x) = \sum_{\ell=1}^{L} \frac{|x_{\ell} - \hat{x}_{\ell}|^2}{|x_{\ell}|^2}$$
 (50)

Phase noise

NMSE
$$(\phi) = \sum_{n_o=1}^{N_o} \frac{|\phi_{n_o} - \hat{\phi}_{n_o}|^2}{|\phi_{n_o}|^2}$$
 (51)

Fading matrix

$$\mathsf{NMSE}(\mathbf{\Gamma}) = \frac{\|\mathbf{\Gamma} - \hat{\mathbf{\Gamma}}\|_{\mathrm{F}}^2}{\|\mathbf{\Gamma}\|_{\mathrm{F}}^2} \qquad (52)$$

Calculate NMSE for different codebook lengths and samples number $N_{o} \ensuremath{N_o}$

Parameter Setup

- $N_t = N_r = 16$ antennas
- $N_s = N_b = N_f = 2$
- Sampling period $T_s = 0.1 \, \mu s$
- Carrier frequency 28 GHz
- 10 ppm CFO: 280 kHz
- 2000 independent trials

Conclusion

Part I

- · Low-complexity tensor beamforming filters
- · Low-rank extension of tensor filters

Part II

- Energy efficiency analysis of precoding structures for mmWave massive MIMO
- Double-sided massive MIMO transceiver schemes

Part III

• Tensor methods for joint wideband channel parameters, phase noise and CFO

Conclusion

Part I

- · Low-complexity tensor beamforming filters
- · Low-rank extension of tensor filters

Part II

- Energy efficiency analysis of precoding structures for mmWave massive MIMO
- Double-sided massive MIMO transceiver schemes

Part III

• Tensor methods for joint wideband channel parameters, phase noise and CFO

Conclusion

Part I

- · Low-complexity tensor beamforming filters
- · Low-rank extension of tensor filters

Part II

- Energy efficiency analysis of precoding structures for mmWave massive MIMO
- Double-sided massive MIMO transceiver schemes

Part III

Tensor methods for joint wideband channel parameters, phase noise and CFO

- Tensor filters extensions
 - Tensor train model
 - Unsupervised strategies
- Wide-band and multi-carrier extensions of the proposed massive MIMO methods
- Transceiver performance under imperfect CSI
- Channel parameter tracking

- Tensor filters extensions
 - Tensor train model
 - Unsupervised strategies
- Wide-band and multi-carrier extensions of the proposed massive MIMO methods
- Transceiver performance under imperfect CSI
- Channel parameter tracking

- Tensor filters extensions
 - Tensor train model
 - Unsupervised strategies
- Wide-band and multi-carrier extensions of the proposed massive MIMO methods
- Transceiver performance under imperfect CSI
- Channel parameter tracking

- Tensor filters extensions
 - Tensor train model
 - Unsupervised strategies
- Wide-band and multi-carrier extensions of the proposed massive MIMO methods
- Transceiver performance under imperfect CSI
- Channel parameter tracking

Publications

Journal Papers

- 1. IEEE JSTSP 2018 Energy efficiency of mmWave massive MIMO precoding with low-resolution DACs
- 2. Signal Processing 2019 Separable linearly constrained minimum variance beamformers
- 3. IET Signal Processing 2019 Low-complexity separable beamformers for massive antenna array systems
- 4. Under revision Double-sided massive MIMO transceivers for mmWave communications

Publications

Conference Papers

- 1. EUSIPCO'17 A low-complexity equalizer for massive MIMO systems based on array separability
- 2. SBRT'18 Separable least-mean squares beamforming
- 3. ICASSP'19 Tensor-based estimation of mmWave MIMO channels with carrier frequency offset
- 4. ISWCS'19 Low-rank tensor MMSE equalization
- 5. Under preparation Joint phase noise and carrier frequency offset estimation in wideband mmWave MIMO channels

Doctoral Thesis Defense

Signal Processing Methods for Large-Scale Multi-Antenna Systems

Lucas Nogueira Ribeiro

Advisor: Prof. Dr. André Lima Férrer de Almeida Co-Advisor: Prof. Dr. João César Moura Mota

Universidade Federal do Ceará Teleinformatics Engineering Department

Fortaleza, October 10th, 2019