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Abstract— Atrial fibrillation (AF) is the most common car-
diac arrhythmia encountered in clinical practice and remains a
major challenge in cardiology. The noninvasive analysis of AF
usually requires the estimation of the atrial activity (AA) signal
in surface electrocardiogram (ECG) recordings. The present
contribution puts forward a tensor decomposition approach
for noninvasive AA extraction in AF ECG recordings. As
opposed to the matrix approach, tensor decompositions are
generally unique under mild conditions and have the potential
to perform source separation in scenarios with a limited number
of electrodes. An experimental study on a synthethic signal
model and a real AF ECG recording evaluates the performance
of the so-called block term tensor decomposition approach as
compared to matrix techniques such as principal component
analysis and independent component analysis.

Index Terms— Atrial fibrillation, blind source separation,
electrocardiogram, independent component analysis, tensor de-
compositions.

I. INTRODUCTION

Atrial fibrillation (AF) is the most prevalent sustained
cardiac arrhythmia in the adult population. It consists in
a disorganized electrical activation of the atria, caused by
ectopic impulses typically originating around the pulmonary
veins and reentrant pathways along regions with reduced
refractoriness due to substrate remodeling. This abnormal
electrical activation is linked to an ineffective atrial contrac-
tion, thus increasing the risk of blood clot formation and
stroke. In the surface electrocardiogram (ECG), the P-wave
of normal atrial activation is replaced by rapid fibrillatory
waves (f-waves) during AF, which are masked in time and
frequency by ventricular activity (VA) during ventricular
beats.

An accurate atrial activity (AA) estimation is an im-
portant step for AF analysis [1]. When multiple spatially
separated electrodes are available, blind source separation
(BSS) techniques can be applied. The BSS approach aims at
estimating and isolating signal sources solely linked to atrial
activation, and usually rely on matrix decompositions, which
require strong mathematical constraints over its factors to
assure uniqueness of the decomposition. Constraints such as
mutual orthogonality between spatial factors, as in principal
component analysis (PCA) [2], and statistical independence
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R. Hidalgo-Muñoz is supported by a Postdoctoral Research Fellowship
awarded by the University of Nice Sophia Antipolis. Vicente Zarzoso is
a member of the Institut Universitaire de France.

between source components, as in independent component
analysis (ICA) [3], [4], sometimes do not hold in practical
settings or may lack physiological interpretation. Moreover,
PCA and ICA are statistical approaches, typically requiring
sufficient sample size to work effectively. As the rank of
a matrix is limited by its smallest dimension, matrix-based
BSS methods cannot deal with the challenging underdeter-
mined scenario, where there are fewer leads than sources.

Tensor decompositions are a promising tool overcoming
the above limitations [5]. Higher-order tensors are multidi-
mensional arrays that can be seen as the generalization of
usual matrices to more than two dimensions. Among their
attractive properties, tensors can be uniquely decomposed
under relatively mild conditions and their rank can exceed
their dimensions [5], thus allowing the development of more
robust BSS methods in limited spatial diversity conditions.

Classical tensor techniques such as the canonical polyadic
decomposition (CPD) have already been employed in elec-
troencephalogram (EEG) data for space-time-frequency anal-
ysis during epileptic seizures [6] and source localization [7].
More recently, the so-called block term decomposition
(BTD) [8] has also been applied to epileptic seizure analysis
from the EEG [9]. In the area of cardiac signal processing,
tensors have been used for feature extraction and ECG
classification [10], as well as fetal ECG extraction from
maternal skin recordings during pregnancy [11]. To our
knowledge, the application of tensor decompositions to AF
analysis remains unexplored.

The present contribution explores the application of tensor
decompositions to noninvasive AA extraction in AF ECGs.
After recalling the CPD, we show the suitability of BTD
in this biomedical context by virtue of the atrial signal
characteristics during AF. Finally, a preliminary comparative
performance evaluation using a synthetic signal model and
real ECG recordings is carried out to gauge the potential
benefits from the tensor approach.

II. MATRIX DECOMPOSITION APPROACH TO
NONINVASIVE AA EXTRACTION IN AF ECGS

When observing multiple ECG leads, the AA extraction
problem can be modeled from the perspective of BSS based
on instantaneous linear mixtures [3], [4]. This approach relies
on the signal model:

Y = MS (1)

where Y ∈ RK×N is the observed ECG data matrix
composed of K leads and N samples, M ∈ RK×R is the
mixing matrix and S ∈ RR×N is the source matrix with



R sources. The coefficients of M reflect the propagation
characteristics of cardiac signals from the heart to the body
surface, and S contain the ventricular, atrial and noise
sources [3]. BSS methods seek to recover S and possibly M
knowing only Y. Because this inverse problem is ill-posed,
the set of possible solutions must be reduced by exploiting a
priori knowledge on the sources and/or the mixing system.
During AF, atrial and ventricular sources can be considered
statistically independent, since atrial wavefronts cause ven-
tricular depolarizations at irregular intervals, thus enabling
the application of ICA techniques [3].

III. TENSOR DECOMPOSITIONS

A. Canonical Polyadic Decomposition (CPD)

Tensor decompositions have been widely used in space-
time-frequency (STF) tensor analysis, obtained by calculat-
ing the short-time Fourier transform (STFT) of each sensor
signal and concatenating the result in a third-order tensor.
CPD has been successfully used for removing artifacts [6]
and providing accurate spatial information on STF EEG
tensors.

The CPD of a third-order STF tensor T ∈ RI1×I2×I3

is defined as the following sum of rank-1 terms T =∑R
r=1 mr ◦ nr ◦ pr, where ◦ denotes the outer product and

mr ∈ RI1 , nr ∈ RI2 and pr ∈ RI3 are the space, time
and frequency signatures of the rth component, respectively.
Obtaining the CPD for STF analysis requires the selection
of the window length and time delay for STFT computation,
as well as numerical algorithms able to cope with complex-
valued data. Although these are not serious limitations, the
lack of priors in the CPD model makes it difficult to target
specific sources of interest. For this reason, we search for
alternative decompositions making explicit use of the desired
signal characteristics.

B. Block Term Decomposition (BTD)

1) Source model: The AA during AF reflects in the ECG
as a narrowband signal. Therefore, modeling it as a sum of
complex exponentials is a plausible hypothesis. According
to this assumption, the rth atrial source could be expressed
as the Lr-pole model:

sr,n =

Lr∑
`r=1

λ`r,rz
n−1
`r,r

, 1 ≤ n ≤ N, 1 ≤ r ≤ R (2)

where Lr is the number of exponential terms, λ`r,r is the
linear coefficient and z`r,r is the base of the exponential
associated with the `rth term of sr,n, also called a pole;
symbol n represents the discrete time index. BTD explicitly
exploits the source model (2) to perform deterministic BSS,
even in the undertermined scenario, under rather general
conditions that are summarized next [8].

2) General BTD formulation: The BTD of a third-order
data tensor T is defined as

T =

R∑
r=1

Er ◦ cr (3)

where Er ∈ RI1×I2 has rank Lr and cr ∈ RI3 . If Er admits
a decomposition Er = D

(1)
r D

(2)T

r , where D
(1)
r ∈ RI1×Lr

and D
(2)
r ∈ RI2×Lr have rank Lr and (·)T denotes the

transpose operator. In view of this, (3) can be expressed as

T =

R∑
r=1

(
D(1)

r D(2)T

r

)
◦ cr. (4)

Note that the rth term of eqn. (4) has multilinear rank
(Lr, Lr, 1). This decomposition is unique up to permuta-
tion and scaling provided the two following conditions [8]:
C1) Factors D(1) = [D

(1)
1 ,D

(1)
2 , . . . ,D

(1)
R ] and D(2) =

[D
(2)
1 ,D

(2)
2 , . . . ,D

(2)
R ] are full column rank and, C2) matrix

C = [c1, c2, . . . , cR] does not contain colinear columns.
Note that I1, I2 ≥

∑R
r=1 Lr to satisfy the first condition.

3) Generating the tensor: To obtain a third-order tensor
Y from the observed data matrix Y while exploiting the
narrowband signal model (2), the kth row of Y is mapped
on to a (I × J) Hankel matrix, which we denote H

(k)
Y , and

stored in the kth matrix slice of Y:

[Y]:,:,k = H
(k)
Y . (5)

Due to the Hankel structure, dimensions I and J fulfil I +
J − 1 = N , and, to maximize the resulting matrix rank,
are chosen as I = J = N+1

2 if N is odd, or I = N
2 and

J = N
2 + 1 if N is even. This procedure yields a tensor Y

with dimensions I × J ×K.
According to this structure and observation model (1),

the entries of tensor Y can be expressed as [Y]i,j,k =∑R
r=1mk,rsr,i+j−1 in which mk,r and sr,i+j−1 are the

(k, r) and (r, i+ j−1) entries of M and S, respectively, for
1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K. Consequently, the kth
matrix slice of Y given in (5) can be expressed as

[Y]:,:,k =

R∑
r=1

mk,rH
(r)
S (6)

where, much in the same fashion as H
(k)
Y , notation H

(r)
S

stands for the (I × J) Hankel matrix obtained from the rth
row of S. The above equation accepts the tensor formulation:

Y =

R∑
r=1

H
(r)
S ◦mr (7)

which is a particular case of the BTD model (3).
4) Uniqueness under source model (2): To understand

why the BTD model (3) is unique under source model (2),
one just needs to take into account that the associated Hankel
matrix H

(r)
S admits a Vandermonde decomposition, and a tall

Vandermonde matrix generated by Lr distinct poles has full-
column rank Lr. Hence, according to uniqueness conditions
C1–C2, model (7) will be unique if all poles z`r,r are distinct,
1 ≤ `r ≤ Lr, 1 ≤ r ≤ R, and M does not have proportional
columns

From the above theoretical derivations, it follows that BTD
would allow the extraction of AA sources during AF even
in limited spatial diversity scenarios.



IV. EXPERIMENTAL ASSESSMENT

A. Generating Synthetic AF ECG Recordings

1) Synthetic atrial source: In this preliminary perfor-
mance evaluation, we adopt a simplified atrial source model
that mimics the sawtooth pattern typically characterizing
the AA signal in early forms of AF or in more organized
supraventricular arrhythmias like atrial flutter:

fn = −
M∑
i=1

2a

iπ
sin

(
2πif0
Fs

n

)
(8)

where a is the sawtooth amplitude, f0 the dominant fre-
quency and Fs the sampling rate. This expression can be
derived from the more general model proposed in [12],
but without amplitude and frequency modulation. Since
one sinusoid consists of two conjugated exponentials, the
synthetic f-wave (8) will consist of 2M exponentials in this
case, a relation that facilitates the parameter selection of
BTD. Indeed, recall that symbol Lr denotes the number of
poles that generate the rth source, which is also rank

(
H

(r)
S

)
(Sec. III-B). Hence, under model (8), we have Lr = 2M .

2) Synthetic AF ECG: Synthetic AF ECGs are generated
by superposing synthetic f-waves generated by the above
model to a real ECG signal from a healthy subject after
P-wave suppression. The ECG is obtained from the PTB
diagnostic database [13]. This ECG, acquired at a sampling
rate of 1 kHz, is preprocessed using a forward-backward
bandpass type-II Chebyshev IIR filter with cut-off frequen-
cies of 0.5 Hz and 30 Hz to remove baseline wander and
powerline interference. P-waves are manually segmented and
then suppressed by spline interpolation between their onset
and offset points. The resulting signals, representing the
VA, are stored after power normalization in matrix V ∈
RL×N , where L denotes the number of leads and N the
number of samples. The synthetic AA signal is generated
according to (8) and stored in vector f ∈ RN . After power
normalization, the AA is defined as A = afT ∈ RL×N ,
where a ∈ RL is a random vector which represents the
atrial spatial signature. A normalized white Gaussian noise
component B is also considered to model sensor noise. The
synthetic AF ECG data matrix Y is finally given by

Y = V + γA+ σB (9)

where γ and σ are the power factors of the atrial and noise
components, respectively. We define the atrial-ventricular
ratio (AVR) as AVR = γ2 and the signal-to-noise ratio (SNR)
as SNR = γ2/σ2.

B. Extraction Performance in Synthetic Recordings

A synthetic AF signal is generated according to model (8)
with M = 5 harmonics, f0 = 6Hz and sampling rate of
Fs = 1 kHz. The sawtooth amplitude a becomes irrelevant
after power normalization, and is then absorbed by the atrial
power factor γ in (9). The AVR is set to −3 dB. After
generating the observation tensor as explained in Sec. III-
B, its BTD is computed by fixing R = 4 and Lr =
2M = 10, r = 1, 2, 3, 4. The BTD factors are randomly

initialized, and the decomposition is computed using the
MATLAB implementation [14] of the nonlinear least-squares
(NLS) approach proposed in [15]. The absolute value of the
Pearson correlation coefficient between the generated and
the estimated f-wave signal is used as performance index.
Monte Carlo (MC) simulations with 30 independent runs are
conducted to obtain a performance index for each method in
a given scenario. Each MC run consists in generating a noisy
AF ECG, extracting the synthetic f wave and calculating the
correlation between the estimated and the generated f wave.
After the MC runs, the mean correlation is calculated for
each method. The results by BTD are compared to those by
two BSS methods based on matrix decompositions, namely,
PCA [2] and RobustICA-f [4].

1) Robustness to additive white Gaussian noise: Figure 1
summarizes the performance of the three techniques for
varying SNR, with N = 5000 samples and L = 4 leads (V1-
V4). Clearly, BTD consistenly offers a superior performance,
especially in the low SNR range.
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Fig. 1. Extraction performance for varying SNR, with N = 5000 samples
and L = 4 leads (V1-V4).

2) Robustness to reduced sample size: The impact of
sample size on estimation quality is shown in Fig. 2, obtained
with leads V1-V4 at 0-dB SNR. BTD outperforms the matrix
techniques except in very short observation windows, which
is somewhat unexpected in a deterministic technique like the
tensor decomposition considered in this work.

3) Robustness to limited spatial diversity: Fig. 3 displays
the performance variations with the number of leads. BTD
offers again a consistenly superior performance, even using
as few as two leads only.

C. Illustrative Real AF ECG Recording

To validate the applicability of BTD in a clinical context,
an additional experiment is conducted with a real AF ECG
observation acquired from a patient suffering from persistent
AF. The original recording is composed of N = 1000 sam-
ples of L = 4 leads, of which only V1 is shown in Fig. 4.
Although the BTD parameters were obtained by trial and
error in this example, the tensor technique yields an f-wave
estimate much closer to the actual atrial signal present in
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Fig. 2. Extraction performance for varying sample size, with SNR = 0 dB
and L = 4 leads (V1-V4).
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Fig. 3. Extraction performance for varying number of leads, with
N = 5000 samples and SNR = 0 dB.

the recording. Remark that the ECG recordings analyzed in
these experiments would be too short for beat subtraction
algorithms to perform properly.
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Fig. 4. Results on an illustrative real AF ECG recording. (a) Lead V1
of the original recording, consisting of 1000 samples. Estimated AA from
BTD (b), RobustICA-f (c) and PCA (d). The three methods are applied on
L = 4 leads (V1-V4); BTD is computed using R = 3 and Lr = 48,
r = 1, 2, 3.

V. CONCLUSIONS

With the goal of overcoming the drawbacks of matrix-
based BSS methods, this work has approached for the first
time the problem of noninvasive AA extraction during AF
from the perspective of tensor decompositions. Using a
simple atrial signal model and a real AF ECG recording,
numerical experiments demonstrate that BTD outperforms
matrix-based methods in noisy and spatially-constrained sce-
narios. Further research should aim at understanding the
unexpected performance deterioration of the tensor tech-
nique for short observation windows, designing automatic
parameter selection methods for BTD, and evaluating its
performance in more realistic AF signal models.
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