
A TENSOR DECOMPOSITION APPROACH TO NONINVASIVE ATRIAL ACTIVITY
EXTRACTION IN ATRIAL FIBRILLATION ECG
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ABSTRACT
Atrial fibrillation (AF), the most common arrhythmia in
adults, is still considered as the last great frontier of car-
diac electrophysiology, since its mechanisms are not com-
pletely understood. Analysis of the atrial activity (AA) signal
contained in electrocardiograms during AF episodes is a
noninvasive and inexpensive solution for obtaining useful
information about AF. This work presents tensor decompo-
sitions as an alternative to classic blind source separation
methods based on matrix decompositions due to their ap-
pealing uniqueness properties and considers in particular
the block term decomposition (BTD). The practical useful-
ness of BTD is evaluated by comparing its AA estimation
quality, measured by spectral concentration, to those of two
benchmark methods, revealing that BTD presents a better
performance. The results presented in this work motivate fur-
ther investigation of tensor decompositions for AF analysis.

Index Terms— Atrial fibrillation, blind source separa-
tion, tensor decompositions, electrocardiogram

1. INTRODUCTION

Atrial fibrillation (AF) is the most common sustained car-
diac arrhythmia in adults. It consists in apparently disor-
ganized impulses typically generated around the pulmonary
veins, leading to rapid f-waves of atrial activity (AA) instead
of the P wave preceding the QRS complex in the electrocar-
diogram (ECG). Currently, AF is still considered as the last
great frontier of cardiac electrophysiology, creating a signif-
icant interest in diverse disciplines of knowledge including
applied mathematics and signal processing.

A good AA estimation is the first step needed to achieve a
rigorous analysis of AF. Classical AA estimation methods [1]
are based on averaging the ventricular activity (VA) and then
subtracting the obtained template from QT segments. How-
ever, since this approach relies on beat detection, it is very
sensitive to ectopic beats. Also, by construction, this ap-
proach cancels out only the VA, ignoring other interference
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sources. In order to surmount these shortcomings, there has
been an interest in blind source separation (BSS) techniques.
Basically, techniques such as principal component analysis
(PCA) and independent component analysis (ICA) have been
used to estimate the AA from ECG recordings [2–4].

The BSS methods mentioned above are based on matrix
decompositions, which require strong mathematical con-
straints over its factors to assure the decomposition unique-
ness and perform the source separation. For instance, con-
straints such as statistical independence between the signal
components and mutual orthogonality on the factor columns
are frequently imposed. Moreover, PCA and ICA are sta-
tistical approaches, implying that the AA estimation quality
depends on the sample size. The impossibility of dealing
with the underdetermined scenario, i.e., when there are more
sources than leads (limited spatial diversity), is a serious
drawback of matrix-based BSS methods. To solve these
limitations, tensor decompositions have been presented as
a promising tool [5]. In short, a higher-order tensor (P th
order, P > 2) can be seen as the generalization of usual
matrices to multidimensional arrays. An attractive property
of high-order tensors is the fact that they can be uniquely
decomposed provided that mild conditions be fulfilled [5],
allowing the development of more robust BSS methods. The
present work explores the application of higher-order tensor
decompositions to noninvasive AA estimation.

Tensor decompositions have been exhaustively reviewed
in the recent literature, e.g., [5, 6] among other works. They
have already been employed in biomedical engineering prob-
lems including space-time-frequency analysis of EEG data
during an epileptic seizure [7] and EEG source localiza-
tion [8]. Regarding ECG processing, higher-order tensors
have been used for feature extraction and classification of
ECG [9] and fetal ECG extraction [10]. In [11], the block
term decomposition (BTD) was introduced as a deterministic
BSS method that supposes that the underlying sources can
be modeled as a sum of complex exponentials. In fact, this
is a plausible assumption for biomedical signals, inspiring
the application of this tensor decomposition on EEG analy-
sis during epileptic seizures [12]. BTD was shown to be a
powerful BSS method when its parameters are well chosen.
Nevertheless, an automatic parameter selection method for



BTD remains an open problem.
In this paper, we propose BTD as a new AA extraction

approach that overcomes the limitations of matrix methods in
temporally and spatially constrained scenarios. To this aim,
it is supposed that the f-waves can be represented as a sum
of complex exponentials. To assure a satisfactory extraction
quality, it is necessary to select good parameters for the de-
composition. An established atrial signal model during AF
will be analyzed to provide some guidelines for parameter se-
lection. Subsequently, the usefulness of BTD will be evalu-
ated on a real AF ECG by comparing its performance to those
of two AA extraction methods based on matrix decomposi-
tions: RobustICA-f [4] and PCA [13].

2. NONINVASIVE AA EXTRACTION IN AF ECGS

2.1. Matrix decomposition approach

BSS approaches based on linear instantaneous mixtures have
been widely used to model the AA extraction problem [2–4].
These methods aim to extract the atrial activity from multilead
ECG based on the model Y = MS, where Y ∈ RK×N is the
ECG data matrix with K leads and N samples, M ∈ RK×R

is the mixing matrix and S ∈ RR×N is the source matrix with
R sources. The coefficients of M reflect the propagation char-
acteristics of the body and S contains the ventricular, atrial
and noise sources [2]. BSS methods seek to recover S and
possibly M knowing only Y. In fact, this inverse problem
presents infinite solutions, and it is then necessary to reduce
the possible solutions using a priori knowledge on the sources
and/or the mixing system. During AF, atrial and ventricular
sources can be considered to be statistically independent or at
least uncorrelated, since atrial wavefronts lead to ventricular
depolarization at irregular instants [2]. It can also be assumed
that the QRST complex can be linked to super-Gaussian com-
ponents, while the f-wave presents a near-Gaussian probabil-
ity density function. However, it is known that AA is a nar-
rowband signal. Therefore, transforming it into the frequency
domain leads to a super-Gaussian component, property ex-
ploited by RobustICA-f [4]. The narrowband character of the
AA could be further exploited to support the signal model
based on a sum of complex exponentials implicitly assumed
by the tensor technique presented next.

2.2. Tensor approach via block term decomposition

Consider a third-order tensor T ∈ RI1×I2×I3 . Its BTD is
defined as

T =

R∑
r=1

Er ◦ cr (1)

where “◦” denotes the outer product, Er ∈ RI1×I2 has rank
Lr and cr ∈ RI3 . If Er admits a decomposition Er =

D
(1)
r D

(2)T

r , where D
(1)
r ∈ RI1×Lr and D

(2)
r ∈ RI2×Lr have

rank Lr, then (1) can be expressed as

T =

R∑
r=1

(
D(1)
r D(2)T

r

)
◦ cr. (2)

Note that each rth term of (2) has multilinear rank (Lr, Lr, 1).
This decomposition will be unique up to permutation and
scaling provided that the factors D(1) =

[
D

(1)
1 ,D

(1)
2 , . . . ,

D
(1)
R

]
and D(2) =

[
D

(2)
1 ,D

(2)
2 , . . . ,D

(2)
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]
are full-column

rank with I1, I2 ≥
∑R
r=1 Lr and C = [c1, c2, . . . , cR] does

not contain collinear columns [11].
In order to obtain a third-order tensor from Y, each kth

row of this matrix is mapped onto a (I × J) Hankel matrix,
with I+J−1 = N , where I = J = N+1

2 ifN is odd, or I =
N
2 and J = N

2 + 1 if N is even. Then each Hankel matrix is
stacked along the third dimension of a tensor Y ∈ RI×J×K ,
which can be defined as

[Y]i,j,k =

R∑
r=1

mk,rsr,i+j−1

in which mk,r and sr,i+j−1 are the (k, r) and (r, i + j − 1)
entries of M and S, respectively, for 1 ≤ i ≤ I, 1 ≤ j ≤
J, 1 ≤ k ≤ K. The kth matrix slice of Y can be expressed as

[Y]:,:,k =

R∑
r=1

mk,rH
(r)
S (3)

where H(r)
S ∈ RI×J is a Hankel matrix obtained from the rth

row of S. In equation (3), for a fixed r and k = 1, . . . ,K, the
matrix H

(r)
S is scaled by mk,r. This implies that for a fixed

r, the outer product between H
(r)
S and mr, the rth column of

M, is being performed to yield their contribution to Y . Now
varying k, we can write in tensor form:

Y =

R∑
r=1

H
(r)
S ◦mr (4)

which is equivalent to the BTD model (1). Now, suppose that
the rth ECG source can be written as:

sr,n =

Lr∑
lr=1

λlr,rz
n−1
lr,r

, 1 ≤ n ≤ N, 1 ≤ r ≤ R (5)

where Lr is the number of exponential terms, λlr,r is the lin-
ear coefficient and zlr,r is the base of the exponential associ-
ated with the lrth term of sr,n, also called pole in [11]. Since
the sources are modeled by (5), their associated Hankel ma-
trix admits the following Vandermonde decomposition [14]:

H
(r)
S = Vrdiag(λ1,r, λ2,r, . . . , λLr,r)V̂

T
r (6)



where the Vandermonde matrices Vr ∈ RI×Lr and V̂r ∈
RJ×Lr are, respectively,

Vr =


1 1 . . . 1

z1,r z2,r . . . zLr,r

...
...

...
zI−1
1,r zI−1

2,r . . . zI−1
Lr,r

 , V̂r =


1 1 . . . 1

z1,r z2,r . . . zLr,r

...
...

...
zJ−1
1,r zJ−1

2,r . . . zJ−1
Lr,r

 .

Since a Vandermonde matrix with I, J ≥ Lr generated by
distinct poles has full-column rank Lr, model (4) will be
unique if all the poles zlr,r are distinct for 1 ≤ lr ≤ Lr, 1 ≤
r ≤ R, and M does not have proportional columns.

In order to calculate the BTD of a higher-order tensor,
the number R of block components and the multilinear rank
(Lr, Lr, 1), r = 1, . . . , R, need to be determined. From
equation (6), symbolLr denotes the number of poles that gen-
erate the rth source. Note that this number is also revealed by
rank

(
H

(r)
S

)
.

2.3. Atrial signal modeling during AF

The model proposed by Stridh and Sörnmo [15] mimics the
sawtooth pattern of that typically characterizes the AA signal
during AF, especially in early forms of the disease. It consists
of a sinusoid and (M −1) harmonics modulated in amplitude
and frequency. Thus the f-wave is modeled by

f(n) = −
M∑
i=1

ai(n) sin
(
iθ(n)

)
(7)

where ai(n) = 2
iπ

[
a+ ∆a sin

(
2π faFs

n
)]

is the modu-
lated amplitude, in which a is the sawtooth amplitude, ∆a
the modulation peak amplitude, fa the amplitude modula-
tion frequency and Fs the sampling frequency. The phase
θ(n) = 2π f0Fs

n +
(

∆f
ff

)
sin
(

2π
ff
Fs
n
)

varies sinusoidally
around f0 with maximum frequency deviation ∆f and mod-
ulation frequency ff .

Model (7) does not accept an exact all-pole representation
as in (5), but it is a useful model for AF and will be used as a
reference signal due to its harmonic structure. The numerical
analysis of the next section evaluates to what extent model
(7) can be approximated by the complex exponential model
assumed by BTD.

3. EXPERIMENTAL RESULTS

The experiments conducted using the artificial AF model
provide guidelines for parameter selection in BTD under
Stridh’s AA signal model even though it cannot generally
be expressed as a sum of complex exponentials. The syn-
thetic AF model proposed above is analyzed in this section to
provide information about the multilinear rank of the block
terms. In this work, the randomly initialized BTD factors
are calculated using the MATLAB implementation [16] of

the nonlinear least-squares (NLS) approach proposed in [17].
After carrying out the decomposition, the rank-Lr component
H

(r)
S is calculated and the rth source is retrieved by averaging

its anti-diagonals, as proposed in [11].
Monte Carlo (MC) simulations are performed to find an

optimal value of R (the number of block terms in (4)) with
respect to the Normalized Mean Squared Error (NMSE), de-
fined as E

[
(ŝ− f)

2
]
/E
[
f2
]
, between the estimated signal

ŝ yielded by BTD and the generated AF signal f given by
equation (7). Then, BTD is performed on real ECGs using the
obtained parameters and its results are compared to those of
benchmark methods. In this case, the spectral concentration
(SC) around the dominant or peak frequency (Fp) is used as

performance index [3]. The SC is defined as
∑1.17Fp

0.82Fp
PAA(fi)∑Fs/2

0 PAA(fi)
,

where PAA is the power spectrum of the AA signal, which is
estimated as in [3].

3.1. Extraction of simulated AF signals

To simplify the search for suitable BTD parameters, we con-
sider Lr = L for r = 1, . . . , R. Henceforth, only L and R
need to be determined. If the actual AA signal was available,
L could be found by calculating the rank of its associated
Hankel matrix as noted at the end of Sec. 2.2. Unfortunately
the signal of interest is unavailable, forcing us to deal with
an approximation of the actual AA signal. In this paper, the
AA is approximated by the model presented in Section 2.3.
The parameters of this synthetic model are chosen to be the
“case A” set of parameters [15] (a = 150µV, ∆a = 50µV,
fa = 0.08 Hz, f0 = 6 Hz, ∆f = 0.2 Hz, ff = 0.1 Hz, and
M = 5), which generates an AF pattern with large ampli-
tude and long cycle length. The sampling rate is Fs = 1 kHz
throughout all experiments presented in this section. Syn-
thetic AF signals with different sample size are generated and
the rank of their associated Hankel matrix is calculated, as
illustrated in Fig. 1.

Figure 1 shows that L grows with the length of the syn-
thetic AF as would be expected from the fact that the signal
does not accept an all-pole model and may be nonstationary.
Consequently, the computational cost for performing the de-
composition grows as well. Therefore, a small sample size
or performing downsampling would be preferred when using
BTD.

Once L has been selected, different values of R can be
tested in order to find the optimal number of block terms.
The following experiment consists of generating synthetic AF
ECGs and extracting the generated f-wave using different val-
ues of R. To generate ventricular interference, sinus rhythm
ECG recordings from the PTB Diagnostic ECG database [18]
are used. These recordings are preprocessed by a forward-
backward bandpass type-II Chebyshev IIR filter with cut-off
frequencies of 0.5 Hz and 30 Hz to remove baseline wander
and powerline interference. Next, the beginning and the end
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Fig. 1. Relationship between the sample size N and the Han-
kel matrix rank L for different values of M , the number of
harmonics in model (7).

of the P waves associated with each heart beat are manually
annotated and each P wave is suppressed by spline interpola-
tion between its onset and offset points. The resulting mul-
tilead signal is stored in matrix V ∈ RK×N , where K is
the number of leads and N the number of samples. Then, a
synthetic AF signal according to model (7) is generated, and
stored in vector f ∈ RN . Both ECG leads and f-wave are nor-
malized and subsequently combined in the following manner:
Y(σ) = afT + σV, where Y(σ) ∈ RK×N is the resulting
observed ECG data matrix, a ∈ RK is an unit-length random
vector of spatial scales representing the AA source contribu-
tion to the ECG leads, and σ is the power factor of the VA
components. Consequently, the atrio-ventricular power ratio
(AVR) can be defined as AVR [dB] = −20 log10 σ. Two MC
simulations are conducted by varying the sample size and the
number of leads and calculating the NMSE for each case, as
depicted in Fig. 2, indicating that using eitherR = 3 orR = 4
results in a low estimation error for at least 3 leads and 1000
samples.

3.2. Real AF ECGs

Real AF ECG recordings that present an f-wave with high
amplitude and long cycle, similar to the synthetic wave used
in the previous section, were acquired at a sampling rate of
977 Hz and preprocessed as in Section 3.1.1 To assess the
performance of the AA extraction methods in a constrained
scenario, only 3 precordial leads (V1-V3) and 1000 samples
were considered. The f-wave was estimated by RobustICA- f,
PCA and BTD, using parameters based on the results ob-
tained with synthetic signals in Sec. 3.1. The rank parameter

1Dataset kindly provided by the Cardiology Department, Princess Grace
Hospital, Monaco.
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Fig. 2. MC simulations with 50 independent runs evaluating
the effect of number of leads K and sample size N on the
estimation quality, for AVR = −6 dB. In the first scenario
N = 1000 samples are used, while K = 6 leads (V1-V6) are
used in the second scenario.

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

5 10 15 20 25 30
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

5 10 15 20 25 30
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

t (s)
5 10 15 20 25 30

0

0.2

0.4

f (Hz)

Fp=5.24 Hz
SC=52.70%

Fp=5.24 Hz
SC=74.33%

Fp=5.24 Hz
SC=53.89%

Fig. 3. Estimated AA waveform (left plots) and spectra (right
plots) for BTD with R = 3 and L = 42 (top), RobustICA-f
(middle) and PCA (bottom) with K = 3 leads and N = 1000
samples. The vertical axis represents waveform amplitude on
the left column and spectral magnitude on the right column.
For reference, the V1 lead signal is shown in the background
(gray) of the left plots.

L = 42 was selected by consulting the value corresponding
to N = 1000 samples for M = 5 harmonics in Fig. 1 and
the number of block terms was chosen as R = 3 according to
Fig. 2. The estimated f-waves are shown in Fig. 3. The es-
timation provided by BTD presents the best SC performance
index in this scenario, indicating its superior robustness to the
spatial diversity (number of leads) over the matrix methods.
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Fig. 4. Spectral concentration vs. sample size N for K = 3
leads (V1-V3) and R = 3.

As ground truth, an intracardiac electrogram recorded by a
bipolar catheter in the left atrial appendage of the same AF
patient presents Fp = 5.84 Hz and SC = 84.5 %.

An additional experiment was carried out by changing the
sample size of the ECG recording, estimating the f-wave and
calculating its SC, as shown in Fig. 4. The parameter L was
computed as in the previous experiment and the number of
block terms was R = 3 as well. These experiments indi-
cate that the f-wave can be approximated as a sum of com-
plex exponentials and that BTD is robust to temporal and spa-
tial constrained scenarios, presenting better SC index over the
benchmark methods. It is important to note, however, that a
successful tensor decomposition by BTD strongly depends on
the proper initialization of its factors. Devising an appropriate
initialization for BTD remains a challenge.

4. CONCLUSIONS

Tensor decompositions are introduced in this work as a new
deterministic method for non-invasive AA extraction intended
to overcome the drawbacks of matrix BSS methods. Experi-
ments with real AF ECG signals reveal that BTD can provide
a better estimation quality over some classical BSS methods
based on matrix decompositions. These results require that
suitable parameters be chosen for BTD. In order to provide
some guidelines for optimal parameter selection, an estab-
lished synthetic AF model was used as reference and analyzed
by means of numerical simulations, allowing the development
of a relationship between the AF model and the BTD param-
eters. This work was mainly intended as a proof of concept of
the applicability of tensor decomposition to noninvasive AA
extraction in AF ECGs. Future work could aim at evaluation
on a full signal database, integrating other AA a priori infor-
mation in the BTD approach and considering more realistic
AF signal models.
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