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ABSTRACT

In the past few years, multidimensional array processing emerged as
the generalization of classic array signal processing. Tensor methods
exploiting array multidimensionality provided more accurate param-
eter estimation and consistent modeling. In this paper, multilinear
translation invariant arrays are studied. An M -dimensional transla-
tion invariant array admits a separable representation in terms of a
reference subarray and a set of M − 1 translations, which is equiva-
lent to a rank-1 decomposition of an M th order array manifold ten-
sor. We show that such a multilinear translation invariant property
can be exploited to design tensor beamformers that operate multilin-
early on the subarray level instead of the global array level, which
is usually the case with a linear beamforming. An important reduc-
tion of the computational complexity is achieved with the proposed
tensor beamformer with a negligible loss in performance compared
to the classical minimum mean square error (MMSE) beamforming
solution.

Index Terms— Array processing, beamforming, tensor filter-
ing.

1. INTRODUCTION

Array signal processing techniques have been used in the last
decades in several area of applications such as: communications sys-
tems [1], audio processing [2], biomedical engineering [3], among
others. An array consists of multiple sensors placed in different lo-
cations in space to process the impinging signals using a spatial filter.
This filter is a beamformer when it is employed to enhance a signal
of interest (SOI) arriving from a certain direction while attenuating
any possible interfering signal [4].

In the past few years, generalized models for array processing
have been proposed for taking advantage of the multidimensionality
present in many types of arrays [1, 5, 6, 7]. For instance, in [8] a mul-
tidimensional harmonic retrieval method that improved the parame-
ter estimation accuracy was proposed. Model selection methods for
such multidimensional models were proposed in [9]. In [5], the au-
thors introduced the concept of translation invariant arrays and pro-
posed a joint channel and source estimation method based on the co-
herence properties of the sources. By contrast, very few works have
concentrated on multidimensional beamforming. In [10], the authors
proposed a MVDR-based beamformer that relies on the PARAFAC
decomposition to estimate the DOA of the SOI. Recently, a multi-
dimensional generalized sidelobe canceller (GSC) beamformer has
been proposed in [11]. The separability of a uniform rectangular ar-
ray was exploited by the proposed technique, resulting in better SOI
estimation and reduced computational complexity compared to the
classic GSC. Both tensor beamformers rely on a prior DOA estima-
tion stage, which is then used to derive the filter coefficients. In [12],
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the authors exploited the separability of the impulse response of a
linear time-invariant system and proposed a trilinear filtering sys-
tem identification algorithm based on a tensor approach. Therein, it
is shown that the tensor approach provides a more accurate system
identification with a reduced computational complexity compared to
its linear counterpart that ignores system separability property.

In this paper, we first extend the translation invariance property
presented in [5] to multiple translation vectors. More specifically, we
start from an M -dimensional translation invariant array that admits
a separable representation in terms of a reference subarray and a set
ofM−1 translations, which is equivalent to a rank-1 decomposition
of an M th order array manifold tensor. We show that such a multi-
linear translation invariant property can be exploited to design tensor
beamformers that operate multilinearly on the subarray level instead
of operating linearly on the global array level, which is the case with
classical beamformers. Hence, an important reduction of the compu-
tational complexity can be achieved by the tensor beamformer, with
a negligible loss in performance compared to the conventional lin-
ear minimum mean square error (MMSE) beamforming. According
to our numerical results, the number of FLOPS demanded by the
proposed method is remarkably lower than that of the linear (vector-
based) MMSE filter for M = 3, 4 even though their SOI estimation
quality are essentially the same. Moreover, since the separability
degrees of freedom increase with the number of sensors in the multi-
dimensional array, the tensor beamforming approach is particularly
interesting for large-scale (massive) sensor arrays.

1.1. Notation
Scalars are denoted by lowercase letters, vectors by lowercase bold-
face letters, matrices by uppercase boldface letters, and higher-order
tensors by calligraphic letters. The Kronecker, outer, and n-mode
products are denoted by the symbols ⊗, ◦, and ×n, respectively.
The `2 norm, statistical expectation, inner product, and n-mode ten-
sor concatenation are denoted by ‖ · ‖22, E[·], 〈·, ·〉, and tn, respec-
tively. The transpose and Hermitian operators are denoted by (·)T
and (·)H, respectively.

2. MULTILINEAR TRANSLATION INVARIANT ARRAYS

In this section, arrays enjoying the translation invariance property
will be studied. Then, a tensor beamforming approach exploiting
the multilinearity present in the translation invariant arrays will be
formulated. First, let us review some tensor prerequisites for conve-
nience.

2.1. Tensor prerequisites
In this work, an N th order tensor is defined as an N -dimensional
array. For instance, T ∈ CI1×I2×...×IN is an N th order tensor
whose elements are denoted by ti1,i2,...,iN = [T ]i1,i2,...,iN where
in ∈ {1, . . . , IN}, n = 1, 2, . . . , N .



The {1, . . . , N}-mode products of T with N matrices
{U(n)}Nn=1 yield the tensor T̃ = T ×1 U

(1) . . .×N U(N) ∈
CJ1×...×JN defined as [13]

[T̃ ]j1,...,jN =

I1∑
i1=1

. . .

IN∑
iN=1

ti1,...,iNu
(1)
j1,i1

. . . u
(N)
jN ,iN

,

where U(n) ∈ CJn×In , in ∈ {1, . . . , In}, and jn ∈ {1, . . . , Jn},
n = 1, . . . , N . The n-mode unfolding of T̃ is given by

T̃(n) = U(n)T(n)U
⊗nT

, (1)

where T(n) denotes the n-mode unfolding of T , and

U⊗n = U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1) (2)

denotes the Kronecker product of the matrices {U(j)}Nj=1,j 6=n in
the decreasing order. Note that the {1, . . . , N}-mode products of T
with theN vectors {u(n)}Nn=1 yields a scalar t = T ×1u

(1)T . . .×N
u(N)T where u(n) ∈ CIn×1, n = 1, . . . , N .

The inner product between A,B ∈ CI1×...×IN is defined as

〈A,B〉 =

I1∑
i1=1

. . .

IN∑
iN=1

ai1,...,iN bi1,...,iN ,

where ai1,...,iN = [A]i1,...,iN and bi1,...,iN = [B]i1,...,iN .
The tensorization operator Θ : C

∏N
n=1 In → RI1×...×IN is de-

fined as [Θ(v)]i1,...,iN = [v]j , where v ∈ C
∏N

n=1 In is an input
vector, and j = i1 +

∑M
µ=2(iµ− 1)

∏µ−1
v=1 Iv for iµ ∈ {1, . . . , Iµ}.

2.2. Signal model
Consider a sensor array composed of N isotropic sensors located
at p̃n ∈ R3×1 for n = 1, . . . , N . This array will be hereafter re-
ferred to as the global array. Consider that R narrowband source
signals with complex amplitudes sr(k) impinge on the global array
from directions dr = [sin θr cosφr, sin θr sinφr, cos θr]

T, where
θr and φr denote the elevation and azimuth angles, respectively,
r = 1, . . . , R. The sources are assumed to be in the far-field and
it is assumed that there are no reflection components. The steering
vector associated with the rth source is given by

a(dr) =
[
e

ω
c
p̃T
1dr , . . . , e

ω
c
p̃T
Ndr

]T
∈ CN×1, (3)

where  =
√
−1, c denotes the velocity of propagation in the

medium, and ω is the wave frequency. The signals collected by the
global array at instant k are modeled as

x(k) =

R∑
r=1

a(dr)sr(k) + b(k) ∈ CN×1, (4)

where b(k) ∈ CN×1 is the additive zero-mean complex white Gaus-
sian noise vector with covariance matrix equal to σ2I.

Lim and Comon presented in [5, 14] the concept of translation
invariant arrays formed by translating a reference subarray. How-
ever, the model discussed therein was limited to one translation vec-
tor only. This idea is now generalized to multiple translation vectors,
leading to a multilinear array structure that will be useful in our con-
text.

Let us assume that the global array enjoys the multilinear trans-
lation invariance property. Consider a reference subarray formed by
N1 reference sensors located at p(1)

n1 for n1 = 1, . . . , N1. The n1th

reference sensor is translated M − 1 times by means of the transla-
tion vectors p

(2)
n2 , . . . ,p

(M)
nM , yielding the following decomposition

for the nth global sensor location vector

p̃n = p(1)
n1

+ p(2)
n2

+ . . .+ p(M)
nM

, (5)

where n = n1 +
∑M
µ=2(nµ − 1)

∏µ−1
v=1 Nv , nµ ∈ {1, . . . , Nµ}.

Note that m = 1 refers to the reference subarray, whereas 2 ≤ m ≤
M refers to the mth order translation vector. Substituting (5) into
the global array vector (3) leads to the following separable form:

a(dr) =


e

ω
c
p
(1)T

1 dr . . . e
ω
c
p
(M)T

1 dr

...

e
ω
c
p
(1)T

N1
dr . . . e

ω
c
p
(M)T

NM
dr


= a(1)(dr)⊗ . . .⊗ a(M)(dr) ∈ C

∏M
m=1 Nm , (6)

where a(m)(dr) = [e
ω
c
p
(m)T

1 dr , . . . , e
ω
c
p
(m)T

Nm
dr ]T ∈ CNm×1 de-

notes the subarray vector associated with the mth order translation
vector p(m)

nm , nm ∈ {1, . . . , Nm}. A close idea was presented in [7]
(therein referred to as multi-scale arrays), although the translation
structure and its interpretation are different from the one we con-
sider in this paper. Indeed, (6) is a vectorization of a rank-1 array
steering tensor defined as

A(dr) = a(M)(dr) ◦ . . . ◦ a(1)(dr) ∈ N1×...×NM . (7)

In view of this, the received signals (4) can be expressed as a linear
combination of R rank-1 tensors:

X (k) =

R∑
r=1

A(dr)sr(k) + B(k), (8)

where B(k) = Θ(b(k)) ∈ CN1×...×NM is the tensorized form of
the noise vector b(k).

The multilinearity inherent to translation invariant arrays allows
us to decompose the array response into multiple setups, as illus-
trated in Fig. 1. From this figure, it can be seen that the same 3-D
global array can be decomposed as two separable (3-D and 1-D)
subarrays (M = 1 translations), or three separable (2-D, 1-D, and
1-D) subarrays (M = 2 translations), or as four 1-D separable ar-
rays (M = 3 translations). Other decompositions are possible, and
the number of possibilities increases as a function of the number of
sensors in the global array.

In the following, we exploit the multilinear translation invariant
property to design tensor beamformers that operate on the subarray
level instead of the global array level. By adopting a multilinear
structure for the beamforming filters, we can obtain a considerable
reduction on the computational complexity of the spatial filtering,
with almost no loss in performance, as will be clear in later sections.

3. TENSOR BEAMFORMING

Classical linear beamforming methods [4] based on model (4) ignore
the multilinearity that may be present in translation invariant arrays.
For convenience, in this work we consider the MMSE beamforming
solution, although the proposed approach is also applicable to other
beamforming solutions. The well-known solution for the MMSE
beamforming problem is given by

wMMSE = R−1
x pdx, (9)



Fig. 1. An 4× 2× 2 volumetric array decomposed in three different
forms, in terms of subarrays translations (M = 2, 3, and 4). Ref-
erence subarrays are indexed by m = 1, whereas m > 1 refers to
translation.

where Rx = E
[
x(k)x(k)H

]
∈ CN×N is the autocorrelation ma-

trix of the received vector, pdx = E [s∗SOI(k)x(k)] is the cross-
correlation vector between the received vector and the SOI. Since
the MMSE filter depends on the inversion of an N × N matrix,
the computational cost of (9) is O(N2). Although the computa-
tional cost is not an issue for small sensor arrays, it may become
prohibitively expensive for large-scale (massive) arrays of sensors.
However, if the global array is translation invariant, then each mth
subarray vector could be estimated/filtered in a lower-dimensional
space, conditioned on the other subarray vectors thanks to the sepa-
rability property of the array structure. Hereafter, instead of design-
ing the beamforming coefficients from the spatial signatures or from
prior DOA estimates (the common approach), we propose a direct
beamforming method that exploits the array separability property in
(8).

Let us consider an M th order tensor filter W ∈
CN1×N2×...×NM , each mode of which is associated with a
different subarray. The output of the tensor beamformer is given by

y(k) = 〈X (k),W∗〉. (10)

The tensor beamformerW can be designed to minimize the follow-
ing cost function

J(W) = E
[
|sSOI(k)− 〈X (k),W∗〉|2

]
, (11)

defined as the MSE between y(k) and the SOI sSOI(k). We as-
sume that the tensor filter is rank-1, i.e.W = w1 ◦ . . . ◦wM , where
wm ∈ CNm×1 form ∈ {1, . . . ,M}. In this case, Eq. (10) becomes
{1, . . . ,M}-mode products between X (k) and {w∗n}Mm=1:

y(k) =

N1∑
n1=1

. . .

NM∑
nM=1

[X (k)]n1,...,nM [W]∗n1,...,nM

=

N1∑
n1=1

. . .

NM∑
nM=1

[X (k)]n1,...,nM [w1]∗n1
. . . [wM ]∗nM

= X (k)×1 w
H
1 . . .×M wH

M . (12)

Substituting (8) into (12), ignoring the noise component for simplic-
ity, and applying the {1, . . . ,M}-mode products yields the follow-
ing output signal

y(k) =

R∑
r=1

[
wH

1a
(1)(dr)

]
◦ . . . ◦

[
wH
Ma(M)(dr)

]
sr(k). (13)

Equation (13) shows that the multilinearity imposed on the beam-
forming tensor W exploits the separability property of the trans-
lation invariant array, i.e., by processing each dimension of X (k)
separately. Due to multilinearity of the tensor beamforming, the cost

function J(W) can be rewritten inM equivalent forms, with respect
to each subfilter:

J(W) = E
[
|sSOI(k)−X (k)×1 w

H
1 . . .×M wH

M |2
]

(14)

= E
[
|sSOI(k)−wH

mX(m)(k)
[
w⊗m

]∗ |2] (15)

= E
[
|sSOI(k)−wH

mum(k)|2
]
, (16)

where um(k) = X(m)(k)
[
w⊗m

]∗ ∈ CIm×1 for m = 1, . . . ,M ,
and w⊗m is defined analogously to (2). Note that the n-mode un-
folding (1) is used in (14) to obtain (15). Deriving (16) with respect
to w∗m and equating the result to 0 ∈ CNm×1 yields:

∂J(W)

∂w∗m
= −pm + Rmwm = 0⇒ ŵm = R−1

m pm, (17)

where pm = E [um(k)s∗SOI(k)] ∈ CNm×1 is the cross-
correlation vector between um(k) and sSOI(k), and Rm =
E
[
um(k)um(k)H

]
∈ CNm×Nm is the autocorrelation matrix as-

sociated with the mth subarray.

Multilinear MMSE beamforming
Standard optimization methods do not guarantee global convergence
when minimizing (14) due to its joint nonconvexity with respect to
all the variables. The alternating minimization approach [12, 15] has
demonstrated to be a solution to solve the global nonlinear problem
in terms of M smaller linear problems. It consists in updating the
mth mode beamforming filter each time by solving (17) for wm,
while {wj}Mj=1,j 6=m remain fixed, m = 1, . . . ,M , conditioned on
the previous updates of the other filters.

Define X = [X (k) tM+1 . . . tM+1 X (k − K + 1)] ∈
CN1×...×NM×K as the concatenation of K time snapshots of X (k)

along the (M + 1)th dimension. Let U(m) ∈ CNm×K denote
the {1, . . . ,m − 1,m + 1, . . . , N}-mode products between X and
{wj}Mj=1,j 6=m:

U(m) = X×1w
H
1 . . .×m−1w

H
m−1×m+1w

H
m+1 . . .×MwH

M . (18)

It can be shown that U(m) = [um(k), . . . ,um(k −K + 1)].
Therefore the sample estimate of Rn and pn are given by:

R̂n =
1

K
U(m)U(m)H (19)

p̂n =
1

K
U(m)s∗, (20)

where s = [sSOI(k), sSOI(k − 1), . . . , sSOI(k −K + 1)]T ∈ CK×1.
The mth order subfilter updating rule is given by ŵm = R̂−1

m p̂m.
The subfilters are estimated in an alternate fashion until convergence,
which is attained when the error between two consecutive iterations
is smaller than a threshold ε. This procedure is described in Algo-
rithm 1.

The multilinear MMSE beamforming algorithm presents a com-
putational complexity of O

(
Q
∑M
m=1N

2
m

)
, where Q is the num-

ber of iterations necessary to attain the convergence. Such an alter-
nating minimization procedure has a monotonic convergence. In this
work, we do not assume any prior knowledge on the array response
and a random initialization is used. In the chosen array configura-
tions, convergence is usually achieved within 4 or 6 iterations. It is
worth mentioning that an analytical convergence analysis of this al-
gorithm is a challenging research topic which is under investigation.

An alternative approach to solve (16) would consist in using a
gradient-based algorithm. The idea of this algorithm is similar to



that of [16], therein referred to as TensorLMS. However, such an
approach would need small step sizes and convergence can be much
slower in comparison with the multilinear MMSE algorithm.

Algorithm 1 Multilinear MMSE
1: procedure MULTILINEARMMSE(X , s, ε)
2: q ← 1
3: Initialize e(q), wm(q), m = 1, . . . ,M .
4: repeat
5: for m = 1, . . . ,M do
6: Calculate U(m)(q) using Equation (18)

7: R̂m ← (1/K)U(m)U(m)H

8: p̂m ← (1/K)U(m)s∗

9: wm(q + 1)← R̂−1
m p̂m

10: end for
11: q ← q + 1

12: y(q)← X ×1 w1(q)
H . . .×M wM (q)H

13: e(q) = ‖s− y(q)‖22/K
14: until |e(q)− e(q − 1)| < ε
15: end procedure

4. NUMERICAL RESULTS

Computer experiments were conducted in order to assess the SOI
estimation performance and the computational complexity of the
proposed tensor beamformer. In this context, R = 3 uncorre-
lated QPSK signals with unitary variance arriving from the direc-
tions (θr, φr) rad ∈

{(
π
3
,−π

4

)
,
(
π
6
, π
3

)
,
(
π
4
,−π

6

)}
were consid-

ered. The signal corresponding to r = 1 was set as SOI. The lin-
ear MMSE beamformer (9) was used as benchmark method. Re-
call that the linear beamformer ignores the multilinear translation
invariant structure of the sensor array, by operating over the vec-
torized form of the received signal tensor. A noise component was
added to the observed signals at the array and the signal-to-noise
ratio was set to 15 dB. The convergence threshold of the multi-
linear MMSE algorithm was set to ε = 10−6. The mean perfor-
mance indices were calculated by averaging the results obtained in
J = 100 Monte Carlo (MC) realizations. The SOI estimation per-
formance was evaluated in terms of the MSE measure, defined as
MSE = 1

J

∑J
j=1

1
K
‖s(j) − 〈X (j),W(j)∗〉‖22, where the superscript

(·)(j) denotes the jth MC realization. The number of FLOPS de-
manded by each method was computed using the Lightspeed MAT-
LAB toolbox [17]. The Tensorlab toolbox [18] was used to imple-
ment the tensor operations involved in the proposed algorithm.

Two simulation scenarios were considered. In the first one, the
performance indices were calculated by varying the number N of
sensors of the global array for K = 5000 samples, as depicted in
Fig. 2. In the second scenario, the performance indices were calcu-
lated by varying the sample size K, as illustrated in Fig. 3. In this
case, the global array consisted of N = 128 sensors. In both sce-
narios, the global array was formed by translating a 2 × 4 uniform
rectangular array, the reference array, along the x-axis.

The left plots of Figures 2 and 3 show that the multilinear
MMSE algorithm offers a reduced computational complexity com-
pared to the linear (vector) MMSE filter thanks to the exploitation of
the array separability, as expected. The gains are particularly more
pronounced for M = 3 and 4. On the other hand, the right plots
of these figures indicate that the MSE of the proposed algorithm is
0.5 dB above that of the linear beamformer. Such a performance gap
can be considered negligible in view of the computational gains, and
it can be explained due to the loss of optimality of the rank-1 filter.
Therefore, the multilinear algorithm offers a reduction on the com-
putation cost with almost no trade-offs in terms of MSE performance
for multilinear translation invariant sensor arrays.
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Fig. 2. Performance for a varying number of sensors for K = 5000
samples.
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Fig. 3. Performance for a varying sample size for N = 128 sensors.

5. CONCLUSION AND PERSPECTIVES

There has been a growing interest on array processing systems ca-
pable of processing data received by a massive number of sensors.
Multilinear array models are interesting in this context since they
represent a sensor array in simpler terms, allowing the development
of computationally efficient array processing methods. In this work,
a tensor beamformer that exploits the separability present in mul-
tilinear translation invariant arrays model was presented. Numeri-
cal results showed that the presented method has a reduced process-
ing time with almost no performance loss compared with the linear
beamforming solution that operates on the global array by ignoring
the array manifold separability. A future work includes the extension
of the proposed tensor beamforming to the wideband filtering sce-
nario, where separability can be further exploited in the joint space-
time domain. In this work, we have adopted a rank-1 representation
for the beamforming filter. The use of low-rank tensor beamformers
will be addressed in the future.
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