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Abstract:
Future cellular systems will likely employ massive bi-dimensional arrays to improve performance by large array gain and more
accurate spatial filtering, motivating the design of low-complexity signal processing methods. We propose optimising a Kronecker-
separable beamforming filter that takes advantage of the bi-dimensional array geometry to reduce computational costs. The
Kronecker factors are obtained using two strategies: alternating optimisation, and sub-array minimum mean square error beam-
forming with Tikhonov regularization. According to the simulation results, the proposed methods are computationally efficient but
come with source recovery degradation, which becomes negligible when the sources are sufficiently separated in space.

1 Introduction

The number of wireless connected devices has been growing sig-
nificantly, bringing new challenges to engineers. Future mobile
communications systems, for example, are expected to provide very
high throughput to several mobile terminals. In order to boost sys-
tem capacity, new transceiver and network architectures are under
investigation. Massive multiple-input-multiple-output (MIMO) tech-
nology, which consists of employing a large number of antenna
elements at the base station (BS) to serve many multi-antenna
users, is expected to yield significant spectral efficiency improve-
ment [1, 2]. Such massive systems should be implemented using
planar arrays in order to reduce the array’s physical dimensions
and to perform elevation and azimuth beamforming. This imple-
mentation, known as full-dimension MIMO (FD-MIMO), allows
for better interference mitigation and has already been incorporated
into 3GPP standards [3]. These technologies pose new engineering
challenges concerning computational and energy efficiency [4], call-
ing for research efforts to design computationally efficient signal
processing methods for high-dimensional systems. ∗

The high computational complexity of multidimensional filter-
ing systems is not a new problem, though, and the first attempts
to tackle this problem can be traced back to some decades ago.
For instance, the authors in [5] proposed a multi-stage represen-
tation for bi-dimensional filters based on the coefficient matrix
eigendecomposition, yielding computer storage and speed savings.
However, computing the eigendecomposition of high-dimensional
observations is expensive in general. More recent works have been
interested in exploiting the algebraic structure present in some
problems to reduce computational costs and to improve system per-
formance. The authors in [6] introduced tensor-based blind source
separation methods which reduce the number of parameters to be
estimated by exploiting the structure of low-rank signals. Such prop-
erty implies that signals can be well approximated by a finite sum
of low-dimensional Kronecker products. Although this representa-
tion simplifies the parameter estimation problem, signal accuracy
is degraded. Kronecker separability has also been exploited in [7–
9] to increase the convergence rate of adaptive algorithms. Gradient
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descent-based solutions were presented in [7, 8] to identify second-
order Kronecker separable systems, which can be useful to model
telephone hybrid causing electrical echoes. In [9], the authors show
that Volterra systems with separable kernels can be expressed in
terms of Kronecker products. In [10], we introduce a supervised
system identification method to identify third-order Kronecker sep-
arable impulse responses based on alternating optimisation. The
proposed identification method is applied to identify the telephone
hybrid-like impulse response of [7]. Simulation results indicate that
the proposed method exhibits better accuracy than the classical
Wiener filter solution. In [11], the method of [10] is extended to cope
with low-rank Kronecker separable systems, allowing for the identi-
fication of more intricate acoustic responses. In [12], fast recursive
least squares methods for identifying second-order Kronecker sep-
arable (bilinear) systems are presented. Analytical and simulation
results confirm the low computational costs and the identification
performance of the proposed bilinear methods.

It is well-known that the spatial signature of planar arrays can
be decomposed along its two dimensions [13]. Based on this prop-
erty, beamforming techniques have been proposed. The authors
in [14] obtained a low-complexity two-dimensional MIMO precod-
ing scheme by exploiting the Kronecker structure in the steering
vectors of rectangular arrays. Therein, the proposed separable zero-
forcing (ZF) precoder is presented based on the small angular spread
at the elevation domain assumption, which enables algebraic sep-
aration of the azimuth and elevation domains by filtering. Results
show that when this assumption is satisfied, the proposed separa-
ble ZF filter exhibits acceptable performance. However, in more
realistic scenarios, this assumption is seldom met, and the perfor-
mance of the separable ZF filter is severely degraded. In [15], a
clever hybrid analogue/digital beamforming method based on the
Kronecker product is proposed for multi-cell multi-user MIMO sys-
tems. The analogue beamformers are designed exploiting the mixed
product property of the Kronecker product to null inter-cell interfer-
ence and to enhance the desired signal power. In [16], the authors
investigate the performance of a tensor global sidelobe canceller
(GSC). Simulation results suggest that this tensor-based beamformer
requires fewer snapshots than the classical GSC filter to achieve
the desired performance. A tensor minimum variance distortionless
response beamformer has been introduced in [17] for polarization
sensitive arrays. In [18], we express the received signal vector of
a massive MIMO system equipped with a planar array using mul-
tilinear (tensor) algebra. From this model, we derived a two-step
low-complexity equaliser which exploits each signal dimension,
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similar to [14]. It basically consists of sub-array ZF beamform-
ing followed by a low-dimensional minimum mean square error
(MMSE) equaliser.

In this present work, we propose novel beamforming techniques
which exploit the array separability to reduce their computational
costs. Our methods are based on the classical MMSE beamformer,
also known as Wiener filter [19]. This filter may be computationally
impractical due to the inversion of a possibly very large covari-
ance matrix. The matrix inversion lemma [20] can be applied to the
MMSE beamformer when the signal statistics are perfectly known,
however, in practice, this seldom happens. As alternatives to the clas-
sical MMSE solution, we propose methods which aim at optimising
a beamforming filter with Kronecker structure, i.e., the coefficients
vector admits a Kronecker factorization. Thus, instead of optimis-
ing a large beamforming vector, we propose designing two relatively
small beamforming vectors corresponding to the Kronecker factors.
We present two strategies to design a Kronecker separable filter. In
the first strategy, the mean square error (MSE) function is minimised
by means of alternating optimisation. This strategy was first intro-
duced in [21], where the beamforming filter is obtained using sample
estimates of the received signal covariance matrix. Here, we derive
analytical expressions for the beamformer assuming perfect knowl-
edge of the array manifold matrix. The second strategy consists of
a closed-form solution based on the Khatri-Rao factorization of the
separable array manifold matrix. Each sub-beamformer is obtained
by performing sub-array MMSE beamforming with Tikhonov regu-
larization. Simulation results show that the proposed methods can be
computationally efficient, however, they come with source recovery
degradation, which becomes insignificant when the wavefronts are
sufficiently separated in the space.

The following notation is adopted throughout the paper: x denotes
a scalar, x a vector, and X a matrix. The (i, j)-th entry of X is
given by [X]i,j . The transposed, conjugated transposed (Hermi-
tian), and pseudo-inverse of X are denoted by XT, XH, and X†,
respectively. The (M ×M)-dimensional identity matrix is repre-
sented by IM . The absolute value, the Frobenius and `2 norms, and
the expected value operator are respectively denoted by | · |, ‖·‖F,
‖ · ‖2, and E [·]. The Kronecker, Khatri-Rao, and n-mode products
are represented by ⊗, �, and ×n, respectively. O(·) represents the
Big-O notation.

This work is organized as follows: the system model is introduced
in Section 2 and the proposed beamforming methods are presented in
Section 3. Therein, we also discuss their computational complexity.
Simulation results are shown and discussed in Section 4, and the
work is concluded in Section 5.

2 System Model

Consider a multi-antenna system equipped with a uniform rectangu-
lar array (URA) with Nh antennas in the horizontal axis, and Nv in
the vertical axis. This array of N = NhNv antennas is distributed
along the y-z plane, as illustrated in Figure 1. Each antenna ele-
ment has the same beam pattern g(φ, θ), where φ and θ denote the
azimuth and elevation angles, respectively∗. The array is illuminated
by R independent narrow-band wavefronts in far-field propaga-
tion arriving from directions (φr, θr), r = 1, . . . , R and carrying
digitally-modulated signals. The wavefronts are assumed to have the
same wavelength λ. The modulated signals at discrete-time instant k
are denoted by sr[k] and assumed to be mutually uncorrelated with
zero mean and variance σ2s .

∗In practical antenna arrays, the element beampatterns would be differ-

ent due to phenomena like mutual coupling, among others. To model such

scenario, one would need to consider individual antenna beampatterns

gn(φ, θ) for all n ∈ {1, . . . , N}.

unit ball

wavefront

Fig. 1: Uniform Rectangular Array (URA) in the y-z plane.

The received signal at the n-th antenna can be modelled as the
superposition of the R incoming wavefronts:

xn[k] =

R∑
r=1

g(φr, θr)an(φr, θr)sr[k] + bn[k], (1)

where an(φr, θr) denotes the array response to the r-th wavefront
at the n-th antenna, and bn[k] the complex additive white Gaus-
sian sensor noise (AWGN) with zero mean and variance σ2b . The
inter-antenna spacing in both the horizontal and vertical axes is
dh = dv = λ/2, thus the array response can be written as

an(φr, θr) = ejπ[(nh−1) sinφr sin θr+(nv−1) cos θr].

with n = nh + (nv − 1)Nh, nh ∈ {1, . . . , Nh}, nv ∈ {1, . . . , Nv}.
For notation simplicity, we define direction cosines with respect
to the horizontal and vertical axis as pr = sinφr sin θr and
qr = cos θr , respectively. Then, using matrix notation and
assuming omni-directional antennas, the received signals vector
x[k] = [x1[k], . . . , xN [k]]T can be represented as

x[k] =

R∑
r=1

a(pr, qr)sr[k] + b[k] = As[k] + b[k], (2)

where a(pr, qr) = [a1(pr, qr), . . . , aN (pr, qr)]
T stands for the

array steering vector, s[k] = [s1[k], . . . , sR[k]]T the symbols vec-
tor, and b[k] = [b1[k], . . . , bN [k]]T the AWGN vector. Note that
the model (2) is valid only for a specific angular range where
g(φr, θr) = 1. Now the array manifold matrix can be written as

A = [a(p1, q1), . . . ,a(pR, qR)] ∈ CN×R. (3)

From our assumptions, it follows that the covariance matrix of the
received signals is given by

Rxx = E
[
x[k]x[k]H

]
= ARssA

H + Rbb,

where Rss = E
[
s[k]s[k]H

]
= σ2sIR and Rbb = E

[
b[k]b[k]H

]
=

σ2bIN . The multi-antenna system employs a beamformer to recover
a desired signal among theR incoming signals. We define the signal-
to-noise ratio (SNR) as the desired signal power over the AWGN
variance, i.e. SNR = σ2s/σ

2
b .
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The array response can be separated into horizontal and verti-
cal contributions owing to the URA bi-dimensionality [13]. More
specifically, the array response with respect to any wavefront can be
factorized as

an(pr, qr) = anh(pr)anv (qr), (4)

where anh(pr) = ejπ(nh−1)pr and anv (qr) = ejπ(nv−1)qr . The
sub-array steering vectors are then defined as

ah(pr) = [a1(pr), . . . , aNh
(pr)]

T ,

av(qr) = [a1(qr), . . . , aNv
(qr)]

T .

The horizontal and vertical sub-arrays of a URA are depicted in
Figure 1. The separable representation in (4) leads to the Kronecker
factorization of the array steering vectors:

a(pr, qr) = av(qr)⊗ ah(pr),

and, consequently, the array manifold matrix (3) can be written as a
Khatri-Rao product

A = [av(q1)⊗ ah(p1), . . . ,av(qR)⊗ ah(pR)] = Av �Ah,
(5)

where

Ah = [ah(p1), . . . ,ah(pR)] ∈ CNh×R,

Av = [av(q1), . . . ,av(qR)] ∈ CNv×R,

stand for the vertical and horizontal sub-array manifold matrices,
respectively. Equation (5) emphasizes the separable structure of the
URA and shall be exploited in beamforming design.

3 Beamforming Methods

We are interested in spatially filtering the received signals x[k] to
extract sd[k], the signal of d-th (desired) wavefront, while attenuat-
ing the interfering signals. To this end, we design the beamforming
filter w ∈ CN so that its output y[k] = wHx[k] approximates the
desired signal. We choose to optimise this filter to minimise the mean
square error (MSE) function

JMSE(w) = E
[
|sd[k]−wHx[k]|2

]
(6)

= σ2s − pH
xsw −wHpxs + wHRxxw,

where pxs = E [x[k]s∗d[k]] = ARssed ∈ CN denotes the cross-
covariance vector, and er ∈ CR the r-th canonical vector in the
R-dimensional space. The MMSE beamformer yields the global
minimum of JMSE(w) and is given by the Wiener filter wopt =
R−1xx pxs [19]. For large array systems, the computation of this filter
becomes impractical since it involves the inversion of a very large
covariance matrix. Iterative algorithms, such as the gradient descent
method, can be used to simplify the calculations, however each of
their iterations can still be computationally expensive.

To simplify the calculations of the MMSE beamforming fil-
ter, we impose the following Kronecker structure: w = wv ⊗wh,
wm ∈ CNm , m ∈ {v, h}. Such a representation is motivated by
the computational reduction of the beamformer design, since only
(Nv +Nh) parameters need to be optimised, against NvNh when
separability is not considered. In order to gain more insight into the
array separability, let us consider an example with N antennas and
R = 1 impinging wavefront. The received signal in this case is given

by x[k] = a(pd, qd)s[k] + b[k]. The output signal for the filter w is
then written as

y[k] = wHx[k] = AF · s[k] + wHb[k],

where AF = wHa(pd, qd) is the array factor. Note that it can be
rewritten as

AF =
[
wH
v av(qd)

]
·
[
wH
hah(pd)

]
. (7)

Equation (7) shows that the total array factor is given by the prod-
uct of the sub-array factors. Note that this property does not depend
on the beam pattern of the antenna elements, since it only relies on
the factorization of the array factor. The steering vectors of some
array geometries, such as circular arrays, for example, do not permit
a Kronecker factorization. In this case, we cannot directly apply the
methods proposed in this work.

We present two novel beamforming strategies based on the
MMSE filter that exploits array separability to reduce computational
costs. In the first strategy, we recast the MSE function (6) using ten-
sor algebra, and then we devise an iterative beamformer based on
alternating minimisation. The reader is referred to [22, 23] for an
introduction to tensor algebra. In the second strategy, we obtain a
closed-form beamforming filter by employing sub-array MMSE fil-
tering. In the end, we discuss the computational complexity of the
proposed methods.

3.1 Tensor MMSE Beamformer

Let us first reformulate the received signal model (1) using tensor
algebra. Considering array separability (4), the received signal at the
n-th antenna can be rewritten as

xnh,nv [k] =

R∑
r=1

= a
(v)
nv (qr)a

(h)
nh (pr)sr[k] + bnh,nv [k], (8)

Now, define the received signals matrix [X[k]]nh,nv = xnh,nv [k],
the array manifold tensor [A]nh,nv,r = a

(h)
nh (pr)a

(v)
nv (qr), and the

AWGN matrix [B[k]]nh,nv = bnh,nv [k]. Using tensor modal prod-
ucts [22], the received signals matrix can be expressed as

X[k] = A×3 s[k]T + B[k] ∈ CNh×Nv . (9)

The array manifold tensor A is a three-dimensional array with
dimensions Nh ×Nv ×R. The two first array modes refer to the
physical array dimensions, whereas the third one represents the
transmitted signal dimension, i.e. the number of wavefronts. This
tensor can be unfolded into matrices in three different manners [22]:

[A](1) =
[
ah(p1)av(q1)T, . . . ,ah(pR)av(qR)T

]
∈ CNh×NvR,

[A](2) =
[
av(q1)ah(p1)T, . . . ,av(qR)ah(pR)T

]
∈ CNv×NhR,

[A](3) = (Av �Ah)T = AT ∈ CR×NvNh .

Let us now rewrite the beamformer output y[k] = wHx[k] in
terms of wh and wv by considering the Kronecker factorization of
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w and the bi-dimensional representation of the received signals (8):

y[k] =

N∑
n=1

[w]∗nxn[k]

=

Nh∑
nh=1

Nv∑
nv=1

[wh]∗nh
[wv]∗nv

xnh,nv [k]. (10)

Using matrix notation, (10) can be rewritten as

y[k] = wH
hX[k]w∗v = wH

vX[k]Tw∗h.

The MSE function (6) can now be reformulated as the following
bi-linear function

JMSE(wh,wv) = (11)

E
[∣∣∣sd[k]−wH

hX[k]w∗v
∣∣∣2] = E

[∣∣∣sd[k]−wH
vX[k]Tw∗h

∣∣∣2] .
Unfortunately, minimising (11) is not straightforward. The gra-

dient of JMSE(wh,wv) with respect to any of its vector variables
depends on the other variable. This coupling disables the direct
application of methods such as gradient descent, calling for alternat-
ing minimisation techniques. To this end, let us define the horizontal
and vertical sub-array input signals

uh[k] = X[k]w∗v ∈ CNh , (12)

uv[k] = X[k]Tw∗h ∈ CNv . (13)

and rewrite (11) as

JMSE(wh,wv) = E
[∣∣∣sd[k]−wH

huh[k]
∣∣∣2] (14)

= E
[∣∣∣sd[k]−wH

v uv[k]
∣∣∣2] . (15)

It is easy to recognize (14) and (15) as linear functions of wh
and wv , respectively, when the other vector variable is fixed.
The proposed beamforming method, referred to as Tensor MMSE
(TMMSE), consists of sequentially minimising (14) and (15) using
the MMSE solution for each sub-filter until a convergence criterion
is satisfied. The sub-beamformers are calculated according to the
following theorem:

Theorem 1. The minimisers of (14) and (15) conditioned on wv
and wh are respectively given by

wh = R−1hhphs,

wv = R−1vv pvs,

where

Rhh = E
[
uh[k]uh[k]H

]
= [A](1)(Rss ⊗w∗vw

T
v )[A]H(1) + σ2b‖wv‖

2
2INh

∈ CNh×Nh ,

Rvv = E
[
uv[k]uv[k]H

]
= [A](2)(Rss ⊗w∗hw

T
h )[A]H(2) + σ2b‖wh‖

2
2INv

∈ CNv×Nv

denote the covariance matrices of the sub-array input signals, and

phs = E
[
uh[k]s∗d[k]

]
= [A](1)(Rssed ⊗w∗v) ∈ CNh ,

pvs = E
[
uv[k]s∗d[k]

]
= [A](2)(Rssed ⊗w∗h) ∈ CNv

the cross-covariance vectors between the sub-array input signals
and the signal of interest.

Algorithm 1 Tensor MMSE algorithm

1: Randomly initialize wh and wv
2: repeat
3: Form Rhh and phs
4: wh ← R−1hhphs
5: Form Rvv and pvs
6: wv ← R−1vv pvs
7: until convergence criterion triggers
8: w ← wv ⊗wh

Proof: See the appendix.

Theorem 1 can be applied when the signals’ statistics (Rss and
Rbb), and the array manifold matrix are known. However, such
information might not be available in practice, and thus the sub-
array covariance matrices and cross-covariance vectors need to be
estimated. It can be done by using sample estimates over K time
snapshots. In this sense, the covariance matrices Rhh and Rvv can
be estimated as

R̂hh =
1

K

K−1∑
k=0

uh[k]uh[k]H,

R̂vv =
1

K

K−1∑
k=0

uv[k]uv[k]H,

and the cross-covariance vectors phs and pvs as

p̂hs =
1

K

K−1∑
k=0

uh[k]s∗d[k],

p̂vs =
1

K

K−1∑
k=0

uv[k]s∗d[k].

Note that uh[k] and uv[k] can be easily formed by observing
x[k], reshaping into X[k], and using Equations (12) and (13),
respectively. The steps to compute the TMMSE beamformer are
summarized in Algorithm 1.

3.2 Kronecker MMSE Beamformer

Let us consider the following Khatri-Rao product property. Let A ∈
CP×M , B ∈ CQ×N , C ∈ CM×R, and D ∈ CN×R. From [24],
it follows that

(A⊗B)(C �D) = (AC) � (BD) ∈ CPQ×R. (16)

This result suggests that a Kronecker separable beamformer can be
individually applied to the corresponding sub-array manifold matrix
in (5). In this case, the filtering operation y[k] = wHx[k] can be
carried out as

y[k] = (wv ⊗wh)H(Av �Ah)s[k] + wHb[k]

=
[
(wH

vAv) � (wH
hAh)

]
s[k] + wHb[k].

Therefore, instead of optimising an N -dimensional beamformer for
A, we can design two independent low-dimensional beamform-
ers for Ah and Av individually. According to this approach, each
sub-beamformer is fed only with signals from the corresponding
antenna sub-array. In this sense, we define the horizontal and vertical
observed signals:

xh[k] = Ahs[k] + bh[k] ∈ CNh

xv[k] = Avs[k] + bv[k] ∈ CNv ,

where bh[k] ∈ CNh and bv[k] ∈ CNv represent the additive Gaus-
sian noise vector observed at the horizontal and vertical sub-arrays,
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respectively. These vectors are defined as

[bh[k]]nh = bnh+(nv−1)Nh
[k]
∣∣∣
nv=1

,

[bv[k]]nv = bnh+(nv−1)Nh
[k]
∣∣∣
nh=1

.

We propose to optimise each sub-beamformer according to the
MMSE criterion. However, the direct application of the MMSE fil-
ter to each sub-beamformer would be prone to numerical problems.
Often in many practical scenarios, e.g. mobile communications, dif-
ferent signals are closely separated in an angular domain (azimuth
or elevation). In this case, either the vertical or horizontal sub-
array manifold matrices become almost rank deficient, turning the
MSE minimisation problem ill-posed. To overcome this issue, we
resort to Tikhonov regularization [25], which avoids singular covari-
ance matrices by penalizing large-norm solutions. The proposed
beamforming method, hereafter referred to as Kronecker MMSE
(KMMSE), independently minimises the following cost functions

J
(h)
MSE(wh, ρ) = E

[
|sd[k]−wH

hxh[k]|2
]

+ ρ‖wh‖22, (17)

J
(v)
MSE(wv, ρ) = E

[
|sd[k]−wH

v xv[k]|2
]

+ ρ‖wv‖22, (18)

where ρ ≥ 0 denotes the regularization parameter. Define

Rm = AmRssA
H
m + Rbb,m, (19)

pm = AmRssed, (20)

with Rbb,m = σ2bINm
for m ∈ {h, v}. The minimisers for (17)

and (18) are thus given by wm = (Rm + ρINm
)−1pm for m ∈

{h, v}. Due to regularization, the KMMSE output signal is not guar-
anteed to have the same power as the desired signal. Thus, we
employ the following scaling to correct the KMMSE output power:
yKMMSE[k] = (σs/σp)p[k], where p[k] = (wv ⊗wh)Hx[k] and
σp denotes the standard deviation of p[k]. In a practical implementa-
tion, this scaling correction can be performed by the automatic gain
control circuit. The computation of the KMMSE filter is summarized
in Algorithm 2.

In practice, one might not have a priori knowledge of the sub-
array manifold matrices (Ah and Av) and signals’ statistics. One
can estimate (19) and (20) using the received signals from the
horizontal and vertical sub-arrays, represented by

x̄m[k] = Ams[k] + bm[k], m ∈ {h, v}.

For the horizontal sub-array, we define

[x̄h[k]]nh = xnh+(nv−1)Nh
[k]
∣∣∣
nv=1

= xnh [k],

with nh ∈ {1, . . . , Nh} and r ∈ {1, . . . , R}. Similarly, for the
vertical sub-array:

[x̄v[k]]nv = xnh+(nv−1)Nh
[k]
∣∣∣
nh=1

= x1+(nv−1)Nh
[k],

with nv ∈ {1, . . . , Nv} and r ∈ {1, . . . , R}. Now, the covariance
matrices can be estimated as

R̂h =

(
1

K

K−1∑
k=0

x̄h[k]x̄h[k]H
)
,

R̂v =

(
1

K

K−1∑
k=0

x̄v[k]x̄v[k]H
)
,

and the cross-covariance vectors as

p̂h =

(
1

K

K−1∑
k=0

x̄h[k]s∗d[k]

)
,

p̂v =

(
1

K

K−1∑
k=0

x̄v[k]s∗d[k]

)
.

The proposed closed-form KMMSE beamformer can be seen as
a sub-optimal solution which relies on a covariance matrix approx-
imation. According to the mixed product property of the Kronecker
product [24], the KMMSE beamformer can be expressed as

w = [(Rv + ρINv
)⊗ (Rh + ρINh

)]−1 (pv ⊗ ph). (21)

The Kronecker product of covariance matrices in (21) can be
regarded as an approximation of Rxx. Also, it is straightforward
to see in (21) that the cross-covariance vector pxs can be exactly
factorized into pv ⊗ ph. We now conduct an asymptotic analysis of
KMMSE to provide insights on its performance.

First, consider the classical MMSE filter

wopt = R−1xx pxs =
(
ARssA

H + Rbb

)−1
ARssed.

Applying the matrix inversion lemma [20], its Hermitian vector can
be written as

wH
opt = eTd

(
R−1ss + AHR−1bb A

)−1
AHR−1bb .

From the signal statistics assumptions in Section 2, we have

wH
opt = eTd

(
σ2b
σ2s

IR + AHA

)−1
AH. (22)

Now we rewrite the Kronecker factors of the KMMSE filter using
(22) and for ρ = 0 to obtain

wH =

eTd
(
σ2b
σ2s

IR + AH
vAv

)−1
AH
v

⊗
eTd

(
σ2b
σ2s

IR + AH
hAh

)−1
AH
h

 . (23)

At high SNR, the noise power drops and σ2b → 0. If the inverse
matrix (AH

mAm)−1 exists for m ∈ {h, v}, then

wH →
(
eTdA

†
v

)
⊗
(
eTdA

†
h

)
. (24)

As expected, each sub-array beamformer converges to a ZF filter.
Using (16) and (24), we see that the KMMSE output signal at high
SNR converges to

y[k]→
[(

eTdA
†
vAv

)
�
(
eTdA

†
hAh

)]
s[k] = sd[k].

The inverse (AH
mAm)−1 exists if and only if AH

mAm is not rank
deficient, i.e., the wavefronts arrive from different directions. How-
ever, when the wavefronts are closely spaced in the angular domain,
AH
mAm becomes ill-conditioned and the ZF filter performs poorly.

Fortunately, when ρ > 0, the inverse matrix is defined, allowing for
desired signal recovery.
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Algorithm 2 Kronecker MMSE filter

1: Select ρ ≥ 0
2: Form Rh and ph
3: wh ← (Rh + ρINh

)−1ph
4: Form Rv and pv
5: wv ← (Rv + ρINv

)−1pv
6: w ← wv ⊗wh

At low SNR the term σ2
b

σ2
s
IR dominates and (23) goes to

wH =

(
eTd
σ2s
σ2b

AH
v

)
⊗

(
eTd
σ2s
σ2b

AH
h

)

=
σ4s
σ4b

av(φd, θd)H ⊗ ah(φd, θd)H. (25)

Equation (25) shows that, as in the classical MMSE filter, the factors
of w converge to matched filters which maximize the desired sig-
nal power. In this case, the KMMSE output signal can be written as
y[k]→ σ4

s

σ4
b

[(av(φd, θd)HAv) � (ah(φd, θd)HAh)]s[k] + wHb[k].
If the incoming wavefronts are sufficiently separated in the angu-
lar domain, i.e., if all av and all ah are mutually orthogonal, then
y[k]→ σ4

s

σ4
b

sd[k] + wHb[k]. The analysis above shows that the pro-
posed KMMSE filter is able to recover the desired signal from the
received signals despite the covariance matrix approximations. Note
that it is based on the assumption that the incoming signals are
sufficiently separated in the angular domain.

The proposed beamforming methods work with low-dimensional
sub-array manifold matrices to decrease their computational com-
plexity. However, this also reduces their degrees of freedom, which
are important for attenuating interfering signals. An MMSE filter
designed for N antennas has N degrees of freedom, i.e., it is capa-
ble of recovering the desired signal and rejecting N − 1 undesired
sources. Our separable beamforming framework, by contrast, offers
Nh and Nv degrees of freedom for the horizontal and vertical sub-
arrays. Therefore, the separable filter performance is limited by the
least degree of freedom. Hence, the proposed methods are capa-
ble of recovering the desired signal and rejecting min(Nh, Nv)− 1
undesired sources. The proposed separable beamforming frame-
work exchanges degrees of freedom for computational complexity
reduction.

3.3 Computational Complexity

The MMSE filter is known to be computationally complex. How-
ever, if the array manifold matrix A and the signal statistics Rss

and Rbb are known, one can employ the matrix inversion lemma to
the MMSE filter and obtain the low-complexity MMSE expression
(22), in which aR×Rmatrix is inverted. However, this information
may not be available, and then sample estimates are needed to com-
pute the MMSE filter. In this case, the inversion lemma cannot be
applied, and, thus an N ×N covariance matrix is inverted in order
to get the MMSE filter coefficients. Such an operation has complex-
ity O(N3), which can be overwhelming for massive array systems.
In this case, the proposed methods can be used since they are much
less expensive in computational terms, as we show in the following.

The TMMSE filter calculates its beamformer coefficients through
an iterative process of I iterations, in which Nh- and Nv-
dimensional matrices are inverted. Therefore, the TMMSE filter
requires O(I(N3

h +N3
v )) operations. Therefore, this method is less

complex than the classical approach provided that I , Nh and Nv
are not too large. The authors in [26] discussed the convergence
of alternating MMSE-based methods and concluded that they are
monotonically convergent. Other numerical properties such as con-
vergence rate and stability are not discussed and, to the best of our
knowledge, the investigation of these aspects remains a research
challenge. The analytical convergence study of the proposed method
is beyond the scope of this work.
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Fig. 2: Number of flops as function of array size for R = 4
wavefronts.

The KMMSE filter is much simpler than the previous methods
since it performs sub-array beamforming using closed-form solu-
tions. To obtain the beamformer coefficients, one needs to invertNh-
and Nv-dimensional matrices only once. Thus, this method carries
out O(N3

h +N3
v ) operations.

4 Simulation Results

We present numerical results from simulations conducted to assess
the performance of the proposed methods. At each simulation, sig-
nal data is generated as follows: R independent sequences of K
QPSK-modulated symbols are generated to form s[k], for all k ∈
{1, . . . ,K}. Next, the direction cosines (pr and qr) of the R wave-
fronts are randomly generated according to a uniform distribution
in the range [−0.9, 0.9] so the array manifold matrix A is formed.
Note that selecting the direction cosines within this range ensures
the omnidirectional propagation assumption of Section 2. Finally,
the observed signals (2) are formed by contaminating the received
symbols with additive noise.

We investigate the computational complexity and source recov-
ery performance of the proposed beamforming methods in terms of
floating point operations (flops) and uncoded bit error ratio (BER)
of the desired signal. We choose BER as figure of merit because
it reveals the noise and interference rejection performance. There-
fore, if the beamforming operation is correctly carried out, then
the interfering wavefronts are attenuated, and the desired signal
BER decreases. The graphs in Figures 3, 4 and 5 were obtained by
averaging the results from 105 independent experiments consider-
ingR = 4 wavefronts,Nh ×Nv = 8× 8 antennas, andK = 1000
symbols. Figures 6–10, however, were collected from a single exper-
iment with R = 6 wavefronts, Nh ×Nv = 4× 4 antennas, and
K = 1000 symbols. The parameter selection for the latter figures
will be motivated in the following paragraphs. The convergence of
the TMMSE method is achieved when the normalised filter resid-
ual between consecutive iterations is smaller than a tolerance value
ε > 0, i.e. ‖ wi

‖wi‖2 −
wi−1

‖wi−1‖2 ‖2 < ε, where i denotes the iteration

number. In all experiments, we set ε = 10−3. Preliminary simula-
tions have shown that the average number of TMMSE iterations
is 5.

The computational complexity, measured in flops, is plotted as
a function of the array size in Figure 2. We use the MATLAB
Lightspeed toolbox [27] for flops counting since it provides the
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Fig. 3: KMMSE BER performance for different regularization
parameter ρ. Nh ×Nv = 8× 8, R = 4 wavefronts.
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Fig. 4: Condition number of (19) for different regularization param-
eter ρ. Nh ×Nv = 8× 8, R = 4 wavefronts.

approximate number of operations required for inverting matrices.
This result shows that the proposed method substantially reduces the
computational complexity of beamforming design. For an array of
16× 16 antennas, the complexity difference between MMSE and
KMMSE is around three orders of magnitude. While KMMSE is
inexpensive in all scenarios, TMMSE is costly for relatively small
arrays due to the iterative optimisation procedure. For arrays of
8× 8 antennas, a set-up expected for 5G systems [3], both separable
beamformers are less expensive than MMSE.

We investigate the influence of the regularization parameter ρ
on the KMMSE BER performance in Figure 3. We observe that
regularization plays a little role in the performance for low SNR
(< 0 dB). In this case, the noise term on (19) has enough energy
to complete the rank of the covariance matrix, decreasing its con-
dition number [28], thus making the horizontal and vertical MMSE
beamformers numerically stable. However, for high SNR (≥ 0 dB),
regularization is paramount to achieve a satisfactory performance.
This is because the noise term is not strong anymore to fill the
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B
E

R

MMSE
TMMSE
KMMSE

(ρ = 0.5)

Fig. 5: Nh ×Nv = 8× 8, R = 4 wavefronts.

Fig. 6: MMSE AF squared magnitude. R = 6 wavefronts, Nh ×
Nv = 4× 4. Asterisk denotes desired signal, cross interfering sig-
nal.

covariance matrix rank in this case, and then the horizontal and ver-
tical covariance matrices in (19) become ill-conditioned. To tackle
this issue, the regularization term fills the covariance matrix rank,
decreasing the condition number, and thus making the regularized
MMSE beamformers stable at high SNR. The link between the
covariance matrix condition number and the regularization param-
eter ρ is clarified in Figure 4. We note that the covariance matrix
becomes more well-conditioned at high SNR as we increase ρ. More
specifically, for ρ = 0, the BER worsens with the SNR, owing to the
increase in the condition number of the horizontal and/or vertical
covariance matrices. For ρ = 0.1, KMMSE exhibits a bad perfor-
mance from 0, dB to 16 dB SNR. In this range, the regularisation
factor is not large enough to avoid performance deterioration due
to ill-condition of the covariance matrix. Finally, for ρ > 0.1, we
observe that KMMSE is not much affected by the covariance matrix
condition. However, the regularisation term yields a BER bias, which
increases with ρ. Figure 3 shows that ρ = 0.5 provides the best
stability-performance trade-off, thus we choose this value for the
next simulations.

Unfortunately, the important computational complexity reduction
observed in Figure 2 comes with source recovery degradation, as one
can see in Figure 5. This figure shows that TMMSE exhibits good
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Fig. 7: TMMSE AF squared magnitude. R = 6 wavefronts, Nh ×
Nv = 4× 4. Asterisk denotes desired signal, cross interfering sig-
nal.

Fig. 8: KMMSE AF squared magnitude. R = 6 wavefronts, Nh ×
Nv = 4× 4, ρ = 0.5. Asterisk denotes desired signal, cross inter-
fering signal.

performance from−20 dB to 0 dB, while KMMSE with regulariza-
tion parameter ρ = 0.5 performs similarly to the benchmark only
from −20 dB to −8 dB. At high SNR, the BER performance of the
separable beamformers is heavily penalized compared to the bench-
mark. When one of the direction cosines (pr or qr) of the interfering
wavefronts is adjacent to those of the desired signal, the separable
beamformers fail to recover it, yielding a significant number of bit
errors. Since the direction cosines of all wavefronts are randomly
selected according to a uniform distribution, it is rather common
that the interfering wavefronts are close to the desired signal in
either p- or q-domain. As a consequence, beamforming fails due
to ill-conditioned covariance matrices, as discussed in the previous
paragraph. At high SNR, the poor BER performance is especially
accentuated because the noise component does not have enough
power to fill the covariance matrix rank. However, whenever the
wavefronts are sufficiently separated in space, the separable beam-
formers exhibit good source recovery performance. The presented
results suggest that the proposed methods are appealing alternatives
to the standard MMSE beamformer. In Figure 2, the computational
complexity of KMMSE, for example, is two orders of magnitude
smaller than that of MMSE for Nh ×Nv = 8× 8. On the other
hand, Figure 5 indicates that KMMSE is 5 dB apart from MMSE
for the uncoded BER of 10−3.

Fig. 9: Horizontal KMMSE AF squared magnitude. R = 6 wave-
fronts, Nh = 4, ρ = 0.5. Asterisk denotes desired signal, cross
interfering signal.

Fig. 10: Vertical KMMSE AF squared magnitude. R = 6 wave-
fronts, Nv = 4, ρ = 0.5. Asterisk denotes desired signal, cross
interfering signal.

To better understand why the separable beamformers are more
sensitive to closely-spaced wavefronts, let us investigate their nor-
malised array factor. We consider a scenario in which the proposed
beamformers fail due to lack of degrees of freedom. For visualisa-
tion easiness, we consider a scenario where a 4× 4 array is applied
to filter R = 6 wavefronts in the following. In this case, each sub-
array beamformer has only 4 degrees of freedom and will fail to filter
theR = 6 signals. By contrast, the classical MMSE beamformer has
16 degrees of freedom and is able to null the interfering wavefronts
and recover the desired signal. Figures 6, 7, and 8 show the magni-
tude of the MMSE, TMMSE, and KMMSE normalised array factors
as functions of the direction cosines, respectively. One can see that
the MMSE filter accurately places nulls at the interfering wavefronts
directions, while a strong beam is pointed towards the desired sig-
nal. This is possible because the 16-dimensional filter has sufficient
degrees of freedom to separate the wavefronts. In contrast to the
benchmark method, KMMSE does not accurately distribute nulls,
hindering interference attenuation. In Figures 9 and 10, one can see
that the KMMSE sub-beamformers do not have enough degrees of
freedom to attenuate the interfering wavefronts. As a consequence,
the undesired signal at (p, q) = (0.5,−0.3) is not properly attenu-
ated, as seen in Figure 8. We observe that only 3 nulls are placed to
attenuate 5 interfering wavefronts in Figure 9. The same is observed
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in Figure 10. To solve this issue, one would need to increase the num-
ber of antennas to, at least, Nh ×Nv = 6× 6. Figure 7 reveals that
TMMSE is more accurate than KMMSE at null placement. This is
because the null locations are optimised as the alternating algorithm
iterates. This accuracy is important especially at high SNR, as one
can see in Figure 5. We conclude that the separable beamformers
are more sensitive to the number of impinging signals and closely
spaced wavefronts than the classical MMSE beamformer due to the
reduced degrees of freedom of the sub-beamformers.

5 Conclusion

We presented two beamforming methods that exploit array separa-
bility to reduce the computational complexity of the classical MMSE
beamformer. The TMMSE filter is based on tensor algebra and min-
imises the MMSE by means of alternating minimisation, while the
KMMSE filter relies on regularized sub-array MMSE beamforming.
Our simulation results show that TMMSE provides moderate com-
putational complexity reduction with small source recovery degra-
dation. By contrast, KMMSE is computationally inexpensive but
exhibits poorer BER performance at high SNR. Therefore, TMMSE
should be employed when source recovery performance is more
important than computation efficiency, and KMMSE on the contrary.
This work paves the way to future contributions, including the exten-
sion to massive MIMO architectures, e.g., hybrid analogue/digital
transceivers. Furthermore, it would be of interest to validate the pro-
posed methods with array responses simulated in an electromagnetic
field simulator software.

6 Appendix

It is well-known that the minimisers of (14) and (15) are given by
the classical MMSE filters wh = R−1hhphs and wv = R−1vv pvs,
respectively. In this appendix, we obtain the covariance matrices
and cross-covariance vectors necessary to calculate these filters. In
our demonstrations, we consider only the horizontal sub-array. The
statistics for the vertical sub-array are analogously derived.

First, let us represent (9) in terms of the matrix unfoldings of A.
Unfolding this tensor along its first mode gives [22]

X[k] = [A](1)(s[k]⊗ INv
) + B[k].

Now the horizontal sub-array input (12) can be expressed as

uh[k]
(a)
=
[
[A](1)(s[k]⊗ INv

) + B[k]
]

(1⊗w∗v)

(b)
= [A](1)(s[k]⊗w∗v) + B[k]w∗v , (26)

where (a) follows by considering w∗v = 1⊗w∗v , and (b) is the
application of the mixed product property [24]:

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

for any matrices A, B, C, D with matching dimensions. The
covariance matrix of (26) is then given by

Rhh = [A](1)(Rss ⊗w∗vw
T
v )[A]H(1) + Rcc,

where Rcc = E
[
c[k]cH[k]

]
, and c[k] = B[k]w∗v ∈ CNh . Note we

have used the fact that E [A⊗B] = E [A]⊗ E [B] for matrices
A and B with mutually independent elements, and that the inputs
of B[k] and s[k] are uncorrelated. To calculate Rcc, consider the

element-wise representation of c[k]:

[c[k]]nh =

Nv∑
nv=1

[B[k]]nh,nv [wv]∗nv
, nh ∈ {1, . . . , Nh}.

The elements of Rcc are given by:

[Rcc]nh,n′h
= E

[
[c[k]]nh [c[k]H]n′h

]
= E

 Nv∑
nv=1

Nv∑
n′v=1

[B[k]]nh,nv
[B[k]]∗n′h,n′v

[wv]nv
[wv]∗n′v


for nh, n

′
h ∈ {1, . . . , Nh}. As the AWGN vector has mutually

independent elements, it follows that

E
[
[B[k]]nh,nv

[B[k]]∗n′h,n′v

]
= 0

for all nv 6= n′v and nh 6= n′h. Therefore, the off-diagonal elements
of Rcc are zero and those at the main diagonal are given by

[Rcc]nh,nh =

Nv∑
nv=1

E
[
[B[k]]nh,nv

[B[k]]∗nh,nv

]
[wv]nv

[wv]∗nv

+ σ2b

Nv∑
nv=1

[wv]nv
[wv]∗nv

= σ2b‖wv‖
2
2

and, consequently, we get Rcc = σ2b‖wv‖
2
2INh

, concluding the
derivation of Rhh. From the definition of phs and uh[k], it follows
that:

phs = E
[(

[A](1)(s[k]⊗w∗v) + B[k]w∗v
)

(s∗d[k]⊗ 1)
]

= [A](1)(s[k]s∗d[k]⊗w∗v) = [A](1)(Rssed ⊗w∗v),

finalising our proof. �
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