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Abstract—With the congestion of the sub-6GHz spectrum,
the interest in massive multiple-input multiple-output (MIMO)
systems operating on millimeter wave spectrum grows. In order
to reduce the power consumption of such massive MIMO
systems, hybrid analog/digital transceivers and application of
low-resolution digital-to-analog/analog-to-digital converters have
been recently proposed. In this work, we investigate the en-
ergy efficiency of quantized hybrid transmitters equipped with
a fully/partially-connected phase-shifting network composed of
active/passive phase-shifters and compare it to that of quantized
digital precoders. We introduce a quantized single-user MIMO
system model based on an additive quantization noise approxima-
tion considering realistic power consumption and loss models to
evaluate the spectral and energy efficiencies of the transmit pre-
coding methods. Simulation results show that partially-connected
hybrid precoders can be more energy-efficient compared to
digital precoders, while fully-connected hybrid precoders exhibit
poor energy efficiency in general. Also, the topology of phase-
shifting components offers an energy-spectral efficiency trade-
off: active phase-shifters provide higher data rates, while passive
phase-shifters maintain better energy efficiency.

Index Terms—Hybrid Precoding, Millimeter Wave, Massive
MIMO, Energy Efficiency, Low-Resolution DAC

I. INTRODUCTION

THE rapid increase of connected mobile terminals in the
past few years has been pushing data rate requirements

of 5G systems to new levels [1]. As the sub-6 GHz spectrum
is congested, moving towards other ranges, such as millimeter
wave (mmWave) regime, has been one of the main ideas for
achieving these requirements [2]. The mmWave band is little
regulated and is mostly available, allowing for mobile commu-
nication systems to operate on large bandwidths. However, the
propagation characteristics on this elevated frequency range
poses many engineering challenges. For instance, according to
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Friis’ Law, the isotropic path loss in free-space propagation is
inversely proportional to the wavelength squared [3]. It implies
that path loss at the mmWave range is more severe than in
lower frequency ranges in general. Nevertheless, for a given
physical aperture, the antenna directional gain is also inversely
proportional to the wavelength squared, and, thus, employing
an array of highly directional antennas more than compensates
for the free-space path loss [4]. Such technology has been
referred to in literature as mmWave massive multiple-input
multiple-output (MIMO) [5], [6], [7].

Hybrid analog/digital (A/D) transceiver architectures have
been proposed to enable mmWave massive MIMO systems [7].
They employ digital filtering (precoding/decoding) at base-
band, and perform beamforming in the radio-frequency (RF)
domain by analog components. The most popular implementa-
tion of this RF beamformer consists of an active phase-shifting
network (PSN) connecting the outputs of the baseband filter
to the antennas, which is known as fully-connected PSN. This
implementation, however, is associated with a large power
consumption as a considerable number of active phase-shift
elements is required. As an alternative, one can employ sub-
array beamforming, reducing the number of phase-shifters,
and, consequently, power consumption. In this case, the PSN is
said to be partially-connected. It has been claimed that hybrid
precoding provides a data throughput close to that of fully-
digital systems [8]. However, insertion losses of RF hardware
are usually disregarded in the analysis of such hybrid systems.
If these losses are not properly compensated for, then their
spectral efficiency might be much smaller in practice than what
is expected.

Another energy-efficient approach to mmWave mas-
sive MIMO consists of using low-resolution digital-to-
analog/analog-to-digital converters (DACs/ADCs) [4]. At the
receive side, the high-resolution ADC chains are the most
power hungry part, motivating the application of low-
resolution devices to reduce their power consumption. At the
transmit side, however, power expenditure is dominated by
power amplifiers (PAs), which are usually required to operate
within the high linearity regime to avoid distortion of the
signal constellation. Employing low-resolution DACs relaxes
the linearity requirement, allowing the amplifiers to operate
closer to saturation, thus increasing their efficiency.
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A. Related Work

Most of recent works on massive MIMO focus on analyz-
ing either the performance of energy-efficient full-resolution
hybrid or low-resolution fully-digital transceivers. In the fol-
lowing, we discuss their contributions.

1) Energy Efficiency of Hybrid Systems: The work of [9]
investigates the spectral and energy efficiencies of hybrid
systems with switches and phase-shifters to perform analog
beamforming. In order to evaluate energy efficiency, they
define a power consumption model for both types of RF
beamforming considering different interconnection of com-
ponents. They also propose a channel estimation technique
based on compressive sensing. According to simulation results,
all hybrid architectures yield similar spectral efficiency for a
given power consumption. In [10], the energetic performance
of single/multi-carrier full-resolution hybrid transceivers is
investigated. A transceiver optimization problem based on
energy efficiency maximization is presented and solved by
the alternating direction of multipliers method. The power
consumption model proposed therein considers the compu-
tational power expenditure and RF hardware losses, which
are usually ignored in most energy efficiency models. This
model assumes the application of PAs and low-noise amplifiers
that compensate for the analog beamforming losses. Based on
this assumption, the paper claims that hybrid precoders with
fully-connected PSN can be energy-efficient when the transmit
power is high, even more than those with partially-connected
PSN. This conclusion, however, contradicts the results of [11],
where the spectral efficiency of a hybrid precoder is examined
under a realistic RF model. Therein, the fully-connected PSN
is modeled as a bank of RF components described by their
S-parameters. The obtained results show that signal-to-noise
ratio (SNR) losses are significant, going up to 25 dB for
the given scenario. Unfortunately, with the current mmWave
amplifier technology, one cannot assume that these losses are
simply compensated for as in [10]. Therefore, in order to
make a more realistic comparison between hybrid and digital
transmitters, the effect of RF losses on the spectral efficiency
has to be considered.

Analog and digital receivers employing low-resolution
ADCs are studied in [12] for single-user MIMO (SU-MIMO).
The authors resort to a stochastic linear quantization model
referred to as additive quantization noise (AQN) model in
order to simplify the analysis of systems with low-resolution
ADCs. For digital combining, singular value decomposition
(SVD) processing with water-filling power allocation is ap-
plied, whereas much simpler matched filtering is employed in
analog beamforming. Lower bounds on data rate are derived
based on the linear quantization approximation, and the AQN
model is shown to be accurate in the low SNR regime. Sim-
ulation results indicate that digital combining exhibits better
performance than the analog scheme. The energy and spectral
efficiency trade-off for digital, analog, and hybrid receivers is
extensively studied in [13]. The ADC is approximated by the
AQN model and achievable rate expressions are obtained. A
power consumption model similar to that of [9] is considered,
allowing to calculate energy efficiency. At the transmit side,

the authors assume fully-digital precoding, whereas, at the
receive side, fully-connected RF beamforming is employed
in addition to digital baseband combining. The analog beam-
formers are computed by the alternating minimization method
of [14], and the baseband filter is obtained through SVD
processing with water-filling power allocation. Results indicate
that analog combining is the most energy-efficient solution
only at low SNR or low-rank channels, while the efficiency
of hybrid and digital combining strongly depends on the
assumed hardware power consumption characteristics for any
other than low-rank channels. It is important to stress that
[13] does not consider insertion losses at the RF domain and
only investigates systems with fully-connected PSN. In [15],
by contrast, hybrid receivers with partially-connected PSN are
compared to digital combiners under a low-resolution ADC
assumption. This contribution shows that digital receivers
using low-resolution ADCs are robust to small automatic
gain control (AGC) imperfections. In the considered power
consumption model, a simple implementation for a 1-bit ADC
is presented, leading to negligible power consumption. The
considered analog combining strategy relies on beam scanning,
and baseband combining consists of SVD processing with
water-filling power allocation, as in the previously mentioned
works. Results suggest that digital combining is more efficient
than hybrid combining especially in the low SNR regime.
However, the contributions mentioned above impose low-
resolution only at the receiver side, assuming fully-digital or
hybrid transmitters with high-resolution DACs.

2) Transmitters with Low-Resolution DACs: Recently pro-
posed massive MIMO signal processing methods such as [16],
[17] assume very large antenna arrays with dedicated RF
chains either at the transmit or at the receive side. However,
such implementation is not energy-efficient and thus needs
to be modified in order to reduce its power requirements.
An alternative to hybrid systems consists of employing low-
resolution DACs/ADCs at transmitter/receiver to relax the
power demands on the fully-digital transceiver.

A SU-MIMO model with low-resolution quantization at
the transmit side is introduced in [18]. A linear approxi-
mation for DAC quantization based on the Bussgang Theo-
rem [19] is presented, allowing the derivation of a minimum
mean square error (MMSE) precoder optimized for tackling
the quantization effects. Bit error ratio results reveal that
this optimized MMSE filter outperforms the plain MMSE
solution. In [20], a narrow-band multi-user MIMO (MU-
MIMO) system employing low-resolution DACs at the base
station is considered. The authors investigate the performance
of linear precoders with coarse quantization and propose a
variety of non-linear precoders based on relaxations of the
MMSE-optimal downlink precoding problem. Achievable rate
expressions are obtained and simulation results suggest that
performance achieved with infinite-resolution DAC can be
attained by using 3 or 4 bits of resolution for the given
scenario. Furthermore, it was shown that the presented non-
linear precoding algorithms significantly outperform the linear
filtering solutions for 1-bit quantization.
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B. Contribution

To the best of our knowledge, extensive performance evalu-
ation of quantized hybrid transmitters with fully- and partially-
connected PSN under realistic RF modeling has not been
considered yet. We thus aim at filling this gap by this paper.
Our main contributions in this direction can be summarized
as follows:

• A SU-MIMO system model for quantized hybrid precod-
ing based on the AQN model is presented. The proposed
system model differs from those previously introduced in
other works in the definition of the total additive noise
vector, which accounts for the additive white Gaussian
noise (AWGN) and an RF-filtered quantization noise.

• We define the quantized hybrid precoding problem, which
can be regarded as a generalization of the quantized
digital precoding and classical hybrid precoding prob-
lems. Achievable rate expressions for both schemes are
derived. For hybrid precoding, we consider both fully-
and partially-connected PSNs. The effects of DAC quanti-
zation on spectral efficiency are assessed through asymp-
totic analysis.

• A power consumption model considering device power
characteristics reported in recent mmWave literature is
presented. Active and passive phase-shifting topologies
are considered in our model. The former has important
power consumption and amplifies the shifted signals,
whereas the latter has insignificant power consumption
and substantial insertion losses. We properly account
for power insertion losses in our signal model using a
realistic RF modeling. The effects of signal processing
computations are also considered in the power budget by
the model presented in [21]. Simulations are conducted to
evaluate the importance of this computational term and
the obtained results suggest that it may be crucial for
large-array systems.

• We introduce an analog beamforming method for
partially-connected structures based on maximum eigen-
mode transmission (MET), and implement this solution
with the low-complexity power method of [22, Section
7.3.1]. The computational complexity of the precoding
methods are determined in order to calculate their power
consumption.

• The energy-spectral efficiency trade-off is investigated to
determine the most efficient precoding strategy, and to
study the influence of phase-shifter implementation on
performance. Our results show that hybrid precoding with
partially-connected PSN and digital precoding are the
most energy- and spectral-efficient solutions, respectively.
Fully-connected PSN, however, exhibits poor energetic
performance due to substantial power consumption and
large insertion losses, which cause severe spectral effi-
ciency degradation. Moreover, we observed that active
phase-shifters favor spectral efficiency, while their passive
implementations focus on energy efficiency.

This work is organized as follows: Section II describes the
system model considered in this work. Signal and channel
models for a narrow-band mmWave SU-MIMO system are

introduced therein. The quantization operation employed in
DACs is defined and approximated by the AQN model, and
the power consumption and loss models are presented. The
analog and digital precoding strategies adopted in this work are
defined in Section III. Also, computational complexity analysis
is conducted in Section III-C and achievable rate bounds are
derived in Section III-D. The proposed models and precoding
methods are assessed through simulations in Section IV, and
the work is concluded in Section V.

C. Notation

In this paper, x denotes a scalar, x a vector, and X a matrix.
The (i, j)-th entry of X is given by [X]i,j . The transposed
and conjugated transposed (Hermitian) of X are denoted by
XT and XH, respectively. The (M ×M)-dimensional identity
matrix is represented by IM . The (M ×N)-dimensional null
matrix is given by 0M×N . tr(·) is the matrix trace, diag(·)
forms a diagonal matrix out of the main diagonal of the matrix
argument, Diag(·) transforms the input vector into a diagonal
matrix, Diagblk(·) forms a block-diagonal matrix from the
matrix inputs, and det(·) is the determinant. The operator ∠(·)
extracts the angle from the argument’s complex elements. The
absolute value, the Frobenius and `2 norms, and the expected
value operator are respectively represented by | · |, ‖·‖F, ‖ · ‖2,
and E [·]. The operators Qb(·) and Qb(·) denote scalar and
vector quantization, respectively. The scalar ceiling function is
given by d·e. The set of circularly-symmetric jointly-Gaussian
complex random vectors with mean vector µ and covariance
matrix C is denoted by CN (µ,C).

II. SYSTEM MODEL

A. Signal Model

Consider a single-user mmWave MIMO system in which
the transmitter sends Ns streams of data symbols through
an array of Nt antennas to the receiver equipped with Nr
antennas. The discrete-time data streams, represented by the
vector s = [s1, . . . , sNs

]T, are assumed to be independent and
Gaussian distributed with zero mean and unit variance, hence
their covariance matrix is Rss = E[ssH] = INs . Before trans-
mission, the data streams are precoded as x = P(s) ∈ CNt

satisfying the average power constraint Px = E
[
‖x‖22

]
≤

Pmax, where P(·) : CNs → CNt represents the precoding
operator. The propagation channel is assumed to be narrow-
band block-fading, so there is no inter-symbol interference,
and the discrete-time representation of the received signal can
be expressed as

y = Hx + n ∈ CNr , (1)

where H ∈ CNr×Nt denotes the MIMO channel matrix, and
n ∼ CN (0Nr×1, σ

2
nINr

) is the AWGN vector. The SNR
normalized with respect to the maximum average transmit
power is defined as γ = Pmax/σ

2
n.

We consider digital and hybrid A/D precoding schemes.
The former consists of precoding the data streams using
only a digital baseband filter FBB ∈ CNt×Ns , which feeds
signals to Nt DAC/RF chain pairs connected PAs and then
to the antenna array, as illustrated in Figure 1a. The latter
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scheme aims at decreasing the precoding power consumption
by employing only Ns ≤ Lt < Nt DAC/RF chain pairs.
To achieve this, the Ns data streams are first precoded by
a digital baseband precoder FBB ∈ CLt×Ns , which feeds Lt
DAC/RF chain pairs. Next, the up-converted signals are filtered
by an analog precoder, amplified and transmitted through
the antenna array. We consider that the analog beamforming
is implemented by low-resolution phase-shifters as in [23].
Fully- and partially-connected PSN topologies are considered
for analog beamforming. In fully-connected PSNs, the output
of each RF chain is split by a Nt-way power divider and
connected to Nt phase-shifters. Afterwards, the shifted signals
are merged by Lt-way power combiners at each PA/antenna
pair. In this case, the analog precoder is represented by a
full matrix FRF ∈ CNt×Lt whose entries are constrained
to have constant modulus and discrete phase resolution, i.e.,
[FRF]m,n ∈ FRF, m ∈ {1, . . . , Nt}, n ∈ {1, . . . , Lt}. The
set FRF = {1, φ, φ2, . . . , φnPS−1} denotes the phase-shift set,
φ = exp(j2π/nPS) the angular resolution, nPS = 2bPS the
number of phase-shifts supported by the hardware, and bPS the
bit resolution. This architecture employs in total LtNt phase-
shift elements and is illustrated in Figure 1b. In partially-
connected PSNs, by contrast, each RF chain is linked to only a
sub-array of Na = dNt/Lte phase-shifters directly connected
to PA/antenna pairs, as illustrated in Figure 1c. Therefore, the
PSN for this architecture employs only Na-way power dividers
and no power combiners at all. The analog beamforming
matrix in this case presents the following structure: FRF =
Diagblk(f1, . . . , fLt) ∈ CNt×Lt , where f` ∈ CNa denotes the
analog beamforming filter of the `-th sub-array. The phase-
shifters constrain the sub-arrays analog beamforming filters as
[f`]m ∈ FRF, ` = 1, . . . , Lt, m ∈ {1, . . . , Na}.

To make our model consistent with power constraints
present in real-world implementations, we incorporate non-
linearities due to the DAC stages, and RF losses caused by
analog beamforming. The non-linearity introduced by DACs
is modeled as a quantization stage. This is because the
continuous-valued DAC output signal has its amplitude well-
represented by a finite set of values generated by the DAC hold
circuits. The RF losses are accounted by considering a power
loss factor 1√

LRF
multiplying the analog beamforming matrix

FRF, as in [11]. The insertion loss of the analog precoder is
represented by LRF and depends on the power characteristics
of the dividers, combiners and phase-shifters. The power loss
model is further detailed in Section II-D. To include DAC and
RF losses in our model, we define the precoding operation as

x = 1√
LRF

FRFQb(FBBs) = 1√
LRF

x̃, (2)

where Qb(·) stands for the vector quantization operator with
b bits of resolution per dimension, and x̃ = FRFQb(FBBs)
the lossless transmitted signal. The vector quantization op-
erator will be further detailed and linearly approximated in
Section II-B. Notice that (2) refers to digital precoding by
setting FRF = INt

, LRF = 1, and FBB ∈ CNt×Ns . Therefore,
for notation convenience, we consider that the quantization
input and output vectors are M -dimensional, where M = Nt
and M = Lt for digital and hybrid precoding, respectively.

Digital 

precoder

DAC

DAC

DAC

RF

RF

RF

PA

PA

PA

(a) Low-resolution digital precoder architecture.

Digital 

precoder

DAC RF PA

RF

precoder

DAC RF PA

DAC RF PA

(b) Low-resolution hybrid precoder with Lt RF chains,
and fully-connected PSN.

Digital 

precoder

DAC RF PA

DAC RF PA

DAC RF PA

(c) Low-resolution hybrid precoder with Lt RF chains,
partially-connected PSN, and Lt sub-arrays of Na an-
tennas.

Fig. 1: Transmitter architectures.

Thus, FRF and FBB are (Nt×M) and (M ×Ns)-dimensional
matrices, respectively.

B. Quantized Signal Model

Let us define the quantization operation used in this work
to model DAC and introduce its linear approximation. We
define Qb(·) as the uniform scalar quantizer that operates
independently on both real and imaginary components of the
input signal. A quantizer with b resolution bits has Nb = 2b

codes for representing the quantized values. The quantizer
output is p = Qb(u) = cRi + jcI` when Re[u] ∈ ]ai−1, ai] and
Im[u] ∈ ]b`−1, b`], for i, ` ∈ {1, . . . , Nb − 1}. The value cRi
(cI` ) represents the code associated with the real (imaginary)
part of the i-th (`-th) quantization interval, and ai (b`) the
quantization segment for the real (imaginary) component. We
set a0 = b0 = −∞ and aNb−1 = bNb−1 = ∞ to support
inputs with arbitrary power. The quantization codes are chosen
to minimize the MSE of Gaussian distributed signals, and they
are listed in [24, Table II]. Such coding suits our modeling
since the baseband precoded signals are still Gaussian. For
vector inputs, we define Qb(·) : CM → CM such that p =
Qb(u) ⇒ [p]m = Qb([u]m), m ∈ {1, . . . ,M}. The vector
quantizer simply consists of applying scalar quantization to
each input vector entry. Unlike the Lloyd-Max quantizer [25],
the considered vector quantization approach is not optimal in
the MSE sense.

Conducting performance analysis of a MIMO system in
terms of the exact non-linear quantization model presented
above can be challenging. Among many reasons, we point to
the difficulty of calculating the statistics of the transmitted
signals. As an alternative, we resort to a linear approximation
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of the scalar quantizer output applying the AQN model [12],
[13], [26] p = Qb(u) ≈

√
1− ρbu + e. The input u is

assumed to be Gaussian distributed, e is the quantization noise
uncorrelated with u, and ρb is a quantization distortion factor,
which is defined as the ratio of the quantization noise variance
σ2
e = E

[
|e|2
]

to the input signal variance σ2
u = E

[
|u|2
]
,

i.e., ρb = σ2
e/σ

2
u [26]. Values for this factor are listed in

[24, Table II, page 12] for resolution up to 5 bits. For larger
resolution, it can be approximated as ρb ≈ π

√
3

2 2−2b [26].
Note that the quantization distortion factor also represents
the inverse of the signal-to-quantization-noise ratio (SQNR).
Thus, when the SQNR goes to infinity, the bit resolution b
increases, and ρb converges to zero. In this quantization model,
the additive noise power is proportional to the input variance
and decreases as the quantization resolution grows. Such a
behavior is coherent with practice and motivates the adoption
of this model. Also note that the approximation definition
ensures that σ2

p ≈ σ2
u. Let us extend the AQN model to MIMO

systems:

p = Qb(u) ≈ Υbu + e ∈ CM . (3)

Vectors u = [u1, . . . , uM ]T and p = [p1, . . . , pM ]T de-
note respectively the input and output of the quantizer, and
e = [e1, . . . , eM ]T the noise quantization vector which sat-
isfies E[ueH] = E[euH] = 0M×M . The diagonal matrix
Υb = Diag(

√
1− ρb,1, . . . ,

√
1− ρb,M ) is formed by the

quantization distortion factors ρb,m associated with the m-th
quantizer input-output. From the definition of ρb, it follows
that the covariance matrix of the quantization error vector is
given by:

Ree = Diag(ρb,1, . . . , ρb,M ) diag(Ruu) ∈ CM×M , (4)

where Ruu = E
[
uuH

]
denotes the quantizer input covariance

matrix. Knowledge of these covariance matrices will be useful
in Section III, where we will derive the achievable rate for each
precoder.

The AQN model approximates a non-linear deterministic
operation as a linear stochastic process by assuming zero
correlation between the quantizer input and the quantization
noise. Similar results are obtained by using the Bussgang
Theorem [19], which states that the cross-correlation function
between two Gaussian signals taken after one of them has been
non-linearly distorted is proportional to the cross-correlation
function before distortion. If a linear model, e.g. (3), is used
to approximate the non-linear distortion, this Theorem implies
that the approximation error is uncorrelated with the input,
i.e., E[ueH] = E[euH] = 0M×M . Therefore, the Bussgang
Theorem can be seen as the theoretical foundation underlying
the AQN model, since this non-correlation assumption is
crucial. It was shown in [15] that AGC error could invalidate
this assumption, but errors between −20% and 20% are still
acceptable. Model accuracy has been investigated in [12] and
it was found to be accurate especially in the low SNR regime,
provided that the input signals are Gaussian distributed.

Now let us apply the AQN model to the precoded signal
model (2). Define the DAC input signal u = FBBs ∈ CM .

The lossless transmitted signal defined in (2) can now be
approximated as

x̃ ≈ FRFΥbu + FRFe ∈ CNt . (5)

Since the data streams {s1, . . . , sNs} are Gaussian distributed,
the baseband precoded signals {u1, . . . , uM} will also be
Gaussian distributed with covariance matrix Ruu = FBBFH

BB.
As each quantizer output is Gaussian distributed and has b bits
of resolution, it is reasonable to claim that all DACs undergo
the same distortion ρb, i.e., ρb,1 = ρb,2 = . . . = ρb,M = ρb,
and, consequently, it follows that Υb =

√
1− ρbIM . Now the

error covariance matrix (4) simplifies to

Ree = ρb diag(Ruu). (6)

Using (2) and (5), the received signal model (1) can be
approximated as:

y = Hx + n ≈ 1√
LRF

H′u + n′, (7)

where H′ = HeqΥb denotes the (Nr ×M)-dimensional total
channel matrix, Heq = HFRF ∈ CNr×M the equivalent
channel formed by the cascade of the analog precoding and
the transmission channel, and n′ = 1√

LRF
Heqe + n ∈ CNr

the total additive noise component. The total channel matrix
H′ is formed by the cascade of Heq and the quantization
scaling Υb. The former factor models the effect of the physical
channel H and the lossless analog precoder FRF (for hybrid
structures). Of course, one must have already designed FRF
to form Heq, and, indeed, computing FRF is the first step of
the hybrid precoding strategies we present in Section III. The
factor Υb, on the other hand, reflects the reduction of the
useful transmit power due to quantization. For high-resolution
quantization, ρb → 0 and H′ → Heq, thus, in this case, the
quantization noise has no impact on the total channel power.
By contrast, for low- and mid-resolution quantization, Υb

becomes important and the total channel is then expressed as
H′ =

√
1− ρbHeq. Since

√
1− ρb is always smaller than one,

low-resolution quantization decreases the total channel power.
Another interesting feature of model (7) is that n′ comprises
the AWGN plus an attenuated channel-filtered quantization
noise term. Therefore, n′ is not guaranteed to be Gaussian, as
nothing is assumed about the distribution of e. The covariance
matrix of the total additive noise is

Rn′n′ = E[n′n′H] = 1
LRF

HeqReeH
H
eq + Rnn ∈ CNr×Nr , (8)

where Rnn = σ2
nINr , and the quantization noise covariance

matrix Ree is given by Equation (6). One can easily see
that Rn′n′ is in general not a diagonal matrix, therefore
the total additive noise vector entries are correlated. Note
that we assume E

[
neH

]
= 0Nr×M , which is reasonable in

practice, since the quantization process at the transmitter has
no influence whatsoever on the receiver sensor noise.

Unfortunately, Equation (7) is still problematic when it
comes to obtaining achievable rate expressions. It is difficult to
separate the total MIMO channel H′ into orthogonal subchan-
nels due to the structure of the total noise vector n′. There are
no guarantees that n′ is Gaussian distributed, complicating
the achievable rate maximization. Moreover, its covariance
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matrix (8) depends on Ree, which varies according to the
diagonal elements of Ruu, bringing a causality problem for the
precoder design. In view of these difficulties, we make some
assumptions to simplify our analysis and to obtain a lower
bound for the achievable rate. In [27], it was shown that the
Gaussian noise distribution minimizes the mutual information
for a given noise covariance matrix. This result motivates us
to approximate the additive quantization noise n′ as a jointly
Gaussian distributed noise vector nG = 1√

LRF
Heqe + n with

covariance matrix RnGnG
= Rn′n′ in order to obtain an

achievable rate lower bound as in [26]. The received signal
model (7) is now be approximated as

y ≈ 1√
LRF

H′u + nG =
1√
LRF

HeqΥbFBBs + nG. (9)

To simplify the analysis of this signal model, the colored noise
vector nG is decorrelated. Since RnGnG

is a Hermitian matrix,
it admits an eigenvalue decomposition RnGnG

= JLJH,
where JHJ = JJH = INr

. The whitening filter is thus given
by R

−1/2
nGnG = L−1/2JH [28], and the received signal vector y

is pre-multiplied by this filter, yielding:

R−1/2nGnG
y = 1√

LRF
R−1/2nGnG

H′u + R−1/2nGnG
nG. (10)

Notice that after noise whitening, the covariance matrix of
the noise vector in (10) is an (Nr ×Nr)-dimensional identity
matrix. We further apply model (10) in Section III to define
the quantized hybrid precoding problem.

C. Channel Model

Experiments conducted in [29], [30] indicate that mmWave
massive MIMO channels present a high degree of spatial
and angular sparsity due to the large path loss, and thus
there are only a few dominant multipaths. Such channels
can be modeled by a narrow-band clustered channel model
contributing with L propagation paths [4], [8] resulting in a
channel matrix

H =
√

NtNr

L

L∑
`=1

α`ar(θ
r
` , φ

r
`)at(θ

t
`, φ

t
`)

H ∈ CNr×Nt , (11)

where α` ∈ C denotes the small-scale fading, ar(θ
r
` , φ

r
`) ∈

CNr and at(θ
t
`, φ

t
`) ∈ CNt the array response and steer-

ing vectors evaluated at elevation θr` (θt`) and azimuth φr`
(φt`) arrival (departure) angles at the receiver (transmitter),
respectively. Each channel matrix realization is normalized
such that E

[
‖H‖2F

]
= NrNt. We assume that each path

has the same average power, i.e., α` is modeled as circular
symmetric Gaussian random variables with zero mean and unit
variance. The departure/arrival elevation and azimuth angles
are uniformly distributed in the intervals ]−π/2, π/2[ rad and
[0, 2π] rad, respectively.

The transmit and receive arrays are assumed to be linear and
uniformly spaced with inter-element spacing of λ/2, where λ
denotes the carrier wavelength. The methods discussed in this
paper can be easily applied to arrays with arbitrary geometry
and element beam-pattern. Assuming that the uniform linear

array is distributed along the x-axis, the steering and array
response vectors follow the Vandermonde structure

ax(θ, φ) =
1√
Nx

[
1, . . . , ejπ(Nx−1) sin θ cosφ

]T
∈ CNx ,

for x ∈ {t, r}.

D. Power Consumption and Loss Models

Energy efficiency is an important concern in the design
of mmWave massive MIMO systems. Large antenna arrays
are employed to compensate for the increased path loss of
mmWave channels and to achieve high spectral efficiency.
However, several electronic components such as DACs, phase-
shifters, and power amplifiers become inefficient when operat-
ing in the millimeter wave range over large bandwidth, making
radio systems equipped with such arrays expensive due to large
power consumption and losses of their RF front-end. There-
fore, there has been important research efforts on designing
systems that not only maximize their spectral efficiency, but
also their energy efficiency, which can be defined as the ratio
of spectral efficiency to power consumption [13].

Hybrid systems seek to decrease power consumption by
employing only a few RF chains and an analog beamforming
stage. Although hybrid architectures are expected to exhibit
reduced power consumption compared to fully-digital systems,
they shall also present important power losses due to phase-
shifters, power dividers, and power combiners. To compensate
for these losses, one could simply adopt high-gain PAs that
would cover the insertion losses. However, high-gain and high-
efficiency PAs are not available for mmWave yet, and, thus,
these losses cannot be easily compensated for, incurring in
energy efficiency degradation. In order to consider these power
losses in our modeling, we adopt a realistic RF formulation
based on the insertion loss of power dividers, power combin-
ers, and phase-shifters.

Recently, active and passive phase-shifting elements for
mmWave have been reported in [31]. The former present non-
negligible power consumption and moderate gain, whereas the
latter has insignificant power consumption and considerable
insertion loss. Therefore, the system designer can either max-
imize the transmit power with increased power consumption
by active phase-shifters, or reduce power consumption with
decreased transmit power by passive phase-shifters. Which
circuit implementation leads to the most energy-efficient hy-
brid system is not clear. Thus, in order to compare the
energy performance of the different transmitter architectures,
we define power consumption models, and we introduce the
power loss modeling in the following.

The influence of signal processing on system power con-
sumption may be important in massive MIMO systems. It is
well-known that the computational demand of standard signal
processing methods significantly grows with the number of an-
tenna elements. Since these methods are typically implemented
in power hungry devices, it is thoughtful to avoid extensive
computations in order to save energy. As pointed out in [32],
this aspect is usually overlooked and should be considered
during system optimization. Therefore, in our modeling, we
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consider the computational power consumption corresponding
to precoder optimization, and the static power consumption of
the RF front-end.

Let us first discuss the static power consumption of hybrid
and digital transmitters. The transmitter RF front-end is formed
by a DAC for each I/Q channel, RF chains, PSN (hybrid
systems), and PAs. The considered direct conversion RF chain
consists of two low-pass filters, two mixers, a local oscillator
shared among all chains, and a 90◦ hybrid with buffers.
Denoting the power consumption of low-pass filter, mixer,
local oscillator, hybrid with buffer as PLP, PM, PLO, PH,
respectively, the power consumption PRF of a single RF chain
is then

PRF = 2PLP + 2PM + PH. (12)

A transmitter with digital precoding employs Nt RF chains,
PAs, and pairs of DACs, thus its power consumption is
given by

PD(Nt, bDAC, Fs) = PLO+PPA+Nt[2PDAC(bDAC, Fs)+PRF],

where PDAC(bDAC, Fs) denotes the power consumption of a
DAC sampling at Fs Hertz with bDAC bits of resolution.
PPA stands for the power consumed by all PAs. A hybrid
transmitter with fully-connected PSN, by contrast, employs
Lt DAC/RF chain pairs. A total of NtLt phase-shifters are
used in this architecture, thus its static power consumption is

PFPSN(Nt, Lt, bDAC, bPS, Fs) =

PLO + PPA + Lt[2PDAC(bDAC, Fs) + PRF] +NtLtPPS(bPS),

where PPS(bPS) denotes power consumption of a single phase-
shift element with bPS bits of resolution. In general, the
power consumption of dividers and combiners is negligible.
Transmitters with partially-connected PSN have Na phase-
shifters per sub-array, i.e., there are NaLt phase-shifters in
total, hence their static power consumption is given by

PPPSN(Nt, Lt, bDAC, bPS, Fs) =

PLO + PPA + Lt[2PDAC(bDAC, Fs) + PRF] +NaLtPPS(bPS).

The need of efficient mmWave systems fueled the de-
velopment of new electronic components. One can find in
the literature different parameters for the electronic devices
considered in our models. We adopt an optimistic parameter
selection approach, in which we choose the most efficient
implementation reported. Results obtained with this approach
ought to provide an idea of what to expect for future mmWave
massive MIMO systems. Regarding the power consumption
of the RF chain components, we consider values reported in
[33, Chapter 5] for the 90◦ hybrid with buffers, [34] for the
mixers, [35] for the low-pass filters, and [36] for the local
oscillator. We employ DACs with a binary-weighted current-
steering topology. Its power consumption is a function of the
effective number of bits bDAC and the sampling frequency
Fs [37]:

PDAC(bDAC, Fs) = 1.5×10−5·2bDAC +9×10−12·bDAC·Fs . (13)

Equation (13) was obtained by the same parameter setup as
in [37]. According to [38, Section 1], this type of DAC is well-
adapted for high-speed conversion since no buffer is required

and thus switching can be done fast. PAs are the most power
hungry devices on the transmit side, because the high linearity
requirements render them inefficient. The power consumed
by the set of PAs with power-added efficiency (PAE) η is
given by PPA = Px/η [39], where Px is the actual transmit
power considering RF losses defined in Section III. Peak
PAE values for state-of-art PAs are listed in [40], and vary
between 6.5−27%. According to our optimistic approach, we
set η = 27%. State-of-art mmWave active phase-shifters have
been listed in [9] and their power consumption lies in the range
15−108 mW with moderate peak gains. As an alternative to
active phase-shifters, passive implementations with negligible
power consumption and significant insertion loss have been
reported in [31]. We spend PPS = 21.6 mW for active phase-
shifters [41] and consider zero power consumption for passive
phase-shifters [31]. The assumed power consumption values
of the RF front-end components are summarized in Table I.

Let us now present the power loss model considered in this
work. As in [11], RF power losses in the analog beamformer
lead to the following representation of the analog precod-

ing matrix: FRF/

√
L
{FPSN,PPSN}
RF , where L{FPSN,PPSN}

RF denotes
the loss factor for fully- and partially-connected PSNs. We
will derive expressions for L{FPSN,PPSN}

RF taking into account
the insertion loss of each RF component in the PSN. We
consider that K-way devices are formed by concatenating
dlog2(K)e stages of two-way devices [11], thus the power
loss for the total dividing and combining stages is given
by L{D,C}(K) [dB] = L̄{D,C}dlog2(K)e, where L̄{D,C} de-
notes the static power loss in decibels of a single two-way
device [11]. We consider that two-way power dividers lose
0.6 dB [11], and two-way power combiners 0.6 dB plus extra
3 dB due to amplitude and phase mismatches. Regarding
phase-shifting, we assume that active phase-shifters have a
gain of 2.3 dB, i.e., loss of LPS = −2.3 dB [41], while passive
phase-shifters have a loss of LPS = 8.8 dB [31]. Values for
L̄D, L̄C, and LPS are listed in Table I.

Let us consider a fully-connected PSN fed with Pin Watts.
The signal power at the input of each Nt-way power divider
is Pin/Lt. After power splitting and phase-shifting, the signal
power at each network branch is (Pin/Lt)/(NtLD(Nt)LPS).
The power level at the output of each Lt-way power com-
biner is [(Pin/Lt)Lt]/(NtLD(Nt)LPSLC(Lt)). Since there are
Nt power combiners, the PSN output power is Pout =
Pin/(LD(Nt)LPSLC(Lt)), and, hence, the loss factor for fully-
connected PSNs is

LFPSN
RF =

Pin

Pout
= LD(Nt)LPSLC(Lt).

The loss factor for partially-connected PSNs is obtained anal-
ogously, considering Na-way power dividers and no power
combining:

LPPSN
RF = LD(Na)LPS.

The computational analysis of signal processing methods
involves counting of arithmetical operations, memory overhead
analysis, among other factors [22]. Here, we consider the
simple computational power consumption model of [21], in
which the power spent with precoder optimization is propor-
tional to the number Nflops of floating-point operations (flops)
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Table I: Power consumption and loss of the RF front-end
components.

Component Notation Value
Power amplifier [40] PPA Px/η, η = 27%

Phase-shifter (active [41] ; passive [31]) PPS 21.6 ; 0 mW

DAC [37] PDAC Equation (13)
Local oscillator [36] PLO 22.5 mW

90◦ hybrid with buffers [33] PH 3 mW

Mixer [34] PM 0.3 mW

Low-pass filter [35] PLP 14 mW

RF chain (Equation (12)) PRF 31.6 mW

Two-way power divider [11] L̄D 0.6 dB

Two-way power combiner [11] L̄C 0.6 dB + 3 dB

Phase-shifter (active [41] ; passive [31]) LPS −2.3 ; 8.8 dB

demanded by the optimization algorithm, the number C of
coherence blocks per second, and inversely proportional to
the transmitter computational efficiency Ec [flops/s/W], i.e., it
is given by

Pcomp = CNflops/Ec.

The number C of coherence blocks determines how many
times the system updates its precoding filters per second. It
is defined as the ratio of the transmit bandwidth B to the
number of coherence blocks, which is given by the product
of the channel coherence bandwidth BC and the channel
coherence time TC , i.e., C = B/(BCTC) [21]. Naturally,
the computational power consumption in practice strongly
depends on the hardware implementation. However, distinct
implementations are characterized by different computational
efficiency Ec. Therefore, the considered model is general
enough to provide insights on the computational power con-
sumption at the transmitter.

III. PRECODING STRATEGIES

In this section, we introduce the quantized hybrid precoding
problem, and present precoding strategies to solve it. Analog
precoding methods for fully- and partially-connected PSN are
presented in Sec. III-A, baseband precoding is defined in
Sec. III-B, computational complexity analysis is conducted in
Sec. III-C, and achievable rate lower bounds are derived in
Sec. III-D.

The quantized hybrid precoding problem is based on system
model (10) assuming perfect and instantaneous channel state
information at both transmitter and receiver. It consists of
finding the precoding matrices FRF and FBB that maximize
the achievable instantaneous rate R [42], i.e.,

maximize
FRF,FBB

log2 det
(
INr + 1

LRF
R−1/2
nGnG

H′RuuH
′HR−1/2,H

nGnG

)
subject to [FRF]u,v ∈ FRF, ∀u∀v, E

[
‖x̃‖22

]
≤ Pmax.

(14)

The achievable rate expression in (14) provides some in-
sights on the performance of the quantized hybrid precoder.
In order to discuss them, consider the actual transmited
power Px = E

[
‖x‖22

]
= 1

LRF
Px̃, where Px̃ = E

[
‖x̃‖22

]
=

(1 − ρb) ‖FRFFBB‖2F + tr(FRFReeF
H
RF) stands for the loss-

less transmit signal power. In the appendix, we show that
Px̃ = Pmax when the baseband precoder presented in Sec-
tion III-B is employed. Therefore, the actual transmit power is
Px = Pmax/LRF, satisfying the average power constraint. As
discussed in Section II-D, if the RF losses are not properly
compensated for, then the actual transmit power is reduced,
decreasing the achievable rate.

Problem (14) is sufficiently general to model other precod-
ing schemes. For example, when ρb = 0, we have Ree =

0M×M ⇒ R
−1/2
nGnG = σ−1n INr

, and the objective function is
rewritten as log2 det

(
INr

+ 1
LRF

R−1nGnG
HeqRuuH

H
eq

)
, which

refers to the hybrid precoding problem [8] with lossy RF hard-
ware. Moreover, when FBB ∈ CNt×Ns , FRF = INt

, LRF = 1,
and ρb = 0, (14) falls back to the classical SU-MIMO digital
precoding problem. The corresponding quantized problems are
obtained for ρb 6= 0.

To solve (14), we adopt the sub-optimal strategy of decou-
pling the precoder design problem into two subproblems for
optimizing FRF and FBB, separately. We first tackle the analog
precoding subproblem for obtaining FRF, allowing us to form
the equivalent channel matrix Heq. Subsequently, we design
our baseband precoder based on the SVD of Heq.

A. Analog Precoding Strategies

In the following, we present analog precoding methods for
the fully- and partially-connected PSN topologies. Since FRF
may have very large dimensions, the computational efforts of
precoding design can be significant, and, thus, we focus on low
computational complexity instead of high spectral efficiency.

1) Fully-connected PSN: As in [13], we design the RF
precoder with the alternating projection method of [14, Section
3]. It consists of initially selecting the first Lt right singular
vectors of the MIMO channel matrix H and forming a semi-
unitary precoder FSU. Next, this matrix is projected onto the
constant modulus space, and the result is projected back to the
semi-unitary matrix FSU. This alternating projection procedure
is repeated until convergence, which is achieved when the
Frobenius norm residual between two consecutive iterations is
smaller than a tolerance value. After convergence, the phase
of each element in FRF is quantized to the closest value in
the phase resolution set FRF. The fully-connected PSN hybrid
precoder is summarized in Algorithm 1.

Algorithm 1 Hybrid precoding (fully-connected PSN)
Require: H, Lt, bPS

1: Compute SVD of H = UΣVH

2: Initialize FSU ← [V]:,1:Lt

3: repeat
4: FRF ← exp(j∠FSU)
5: Compute SVD of FRF = ŨΣ̃ṼH

6: FSU ← [Ũ]:,1:LtṼ
H

7: until convergence criterion triggers
8: FRF ← exp(jQbPS (∠FRF))

2) Partially-connected PSN: For the partially-connected
RF precoding, we define the sub-channel matrix H` =
[H]:,na+(`−1)Na

∈ CNr×Na , na = 1, . . . , Na, that contains
the Na columns of H belonging to the `-th antenna sub-array.



9

The proposed design employs quantized MET for each sub-
array, i.e., f` = exp(jQbPS(∠vmax

` )), ` = 1, . . . , Lt, where
vmax
` denotes the right singular vector corresponding to the

largest (dominant) singular value of H`. The projection step
enforces the constant modulus constraint imposed by the
phase-shifters. Since we are interested only in vmax

` , we can
use the simple power method [22, Section 8.2.1] to calculate it.
This algorithm is significantly less expensive than, for exam-
ple, the R-SVD algorithm [22] which is useful for computing
the full SVD. The power method achieves convergence when
the residual error between two consecutive iterations is smaller
than a tolerance value. It is guaranteed to converge if the
dominant singular value is larger than all the other singular
values in modulus and if the initial guess for vmax

` has a non-
zero component in the direction of the corresponding right
singular vector [22], which occurs for the model presented in
Section II-C. The partially-connected hybrid precoding method
is outlined in Algorithm 2.

Algorithm 2 Analog beamforming for partially-connected
PSN via the power method
Require: H, Lt, Na, bPS

1: for ` = 1, . . . , Lt do
2: Form H` ← [H]:,na+(`−1)Na

, na = 1, . . . , Na
3: Randomly initialize v` ∈ CNa

4: repeat
5: v` ← HH

`H`v
6: v` ← v`/‖v`‖2
7: until convergence criterion triggers
8: end for
9: FRF ← Diagblk

[
exp(jQbPS (∠v1)), . . . , exp(jQbPS (∠vLt ))

]

B. Digital Precoding Strategy

Unfortunately, finding the digital precoder FBB that max-
imizes (14) for fixed FRF is not straightforward. The SVD
precoding with water-filling power allocation is not guaranteed
anymore to decompose the MIMO system into orthogonal sub-
channels due to the structure of the total noise vector n′.
Furthermore, in order to form H′, one needs knowledge of
the diagonal elements of Ruu, which depends on FBB.

To solve these problems, notice that as the quantiza-
tion resolution increases, ρb → 0, RnGnG

→ Rnn,
H′ → Heq, and the instantaneous rate in (14) goes to
log2 det

(
INr + 1

LRF
R−1nnHeqRuuH

H
eq

)
. In this case, SVD pre-

coding and water-filling power allocation with respect to Heq
and Rnn become optimal. Note that this strategy still max-
imizes the achievable rate regardless of 1

LRF
, thus we ignore

this power loss factor in the transmitted signal model when
designing FBB by setting LRF = 1. In general, this strategy
becomes sub-optimal under low-resolution quantization. Nev-
ertheless, it is still expected to be close to optimal, particularly
at low SNR. In such regime, AWGN overruns the quantization
noise, motivating the use of the SVD precoding. At high SNR,
however, the quantization noise dominates and this solution is
only sub-optimal. Since massive MIMO systems will likely
operate in low SNR regimes, this choice is reasonable in
practice.

Following our discussion, we design FBB as the optimal
precoder in infinite-resolution DAC scenarios. In this sense,
we assume ρb = 0 and knowledge of FRF (see Section III-A),
allowing Heq to be formed1. The baseband precoder is then
obtained by solving

maximize
FBB

log2 det
(
INr

+ R−1nnHeqFBBFH
BBHH

eq

)
subject to E

[
‖x̃‖22

]
≤ Pmax.

(15)

It is straightforward to show that the average power constraint
in (15) can be rewritten as ‖FRFFBB‖2F ≤ Pmax when ρb = 0.
Let the SVD of the equivalent channel be denoted by Heq =
UΣVH, in which U ∈ CNr×Ns , Σ ∈ CNs×Ns , and V ∈
CM×Ns . We employ SVD baseband precoding with water-
filling power allocation, and normalize it so that the average
power constraint in (15) is obeyed:

FBB =
√
Pmax

‖FRFQ‖F
Q, (16)

where Q = VΛ1/2 ∈ CNt×Ns represents the SVD precoder
with the diagonal power allocation matrix Λ ∈ RNs×Ns . In the
appendix, we show that the average power constraint is always
satisfied regardless of DAC quantization resolution, and that
‖FRFQ‖2F = NtPmax, which gives FBB = 1√

Nt
Q.

For fully-digital transmitters, Problem (15) becomes

maximize
FBB

log2 det
(
INr + R−1nnHFBBFH

BBHH
)

subject to ‖FBB‖2F ≤ Pmax.

The solution in this case is FBB = V̄Λ̄−1/2, where V̄ ∈
CNt×Ns represents the right singular vector matrix of H, and
Λ̄ ∈ CNs×Ns the corresponding water-filling power allocation
matrix.

C. Computational Complexity Analysis

The computational analysis of the proposed precoding meth-
ods is important to evaluate the impact of signal processing
on the transmitter power budget with the power consumption
modeling presented in Section II-D. In the following analysis,
we consider that the matrix product of A ∈ CM×R and
B ∈ CR×N requires 2MNR flops as in [22].

From our discussion in Section III-B, fully-digital precod-
ing consists of SVD and water-filling power allocation. Its
computational complexity is dominated by the algorithm that
decomposes H. According to [22, Figure 8.6.1], one needs
NSVD

flops = 4P 2Q + 22Q3 flops to compute the full SVD of
a (P × Q)-dimensional matrix with the R-SVD algorithm.
Therefore, the number of flops necessary to obtain the digital
precoder is ND

flops = 4N2
rNt + 22N3

t .
Signal processing of hybrid precoding is carried out in two

stages: baseband and analog precoding. The computational
complexity of the former stage is dominated by the SVD of
Heq which demands NSVD

flops = 4N2
rLt + 22L3

t + 2NrNtLt
flops. The term 2NrNtLt in NSVD

flops refers to the matrix product
that forms Heq. The computational effort of the latter stage
corresponds to the number of flops demanded by the analog

1In a practical setup, Heq could be estimated at the receiver and sent back
to the transmitter via a feedback channel.
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Table II: Flop counting for Algorithm 1.

Line Flops count
1 4N2

rNt + 22N3
t

4 4NtLt

5 4N2
t Lt + 22L3

t

6 2NtL2
t

Table III: Flop counting for Algorithm 2.

Line Flops count
5 4NtNa

6 2Na + 1

precoding algorithm. The flop counting for Algorithms 1 and
2 is detailed in Tables II and III, respectively. According to
Table II, NFPSN

flops = 4N2
rNt + 22N3

t + I(4NtLt + 4N2
t Lt +

22L3
t + 2NtL

2
t ) flops are necessary to compute the fully-

connected analog precoder, where I denotes the number of
iterations of the alternating minimization method. The total
cost is then given by the baseband and analog precoders com-
putation cost NF

flops = NSVD
flops +NFPSN

flops . According to Table III,
the total number of flops necessary for computing the partially-
connected analog precoder is NPPSN

flops = J(4NtNa + 2Na + 1),
where J represents the number of iterations of the power
method. The total computation cost of the partially-connected
hybrid precoder accounts for the calculation of Heq and its
SVD. Therefore, it is given by NP

flops = NSVD
flops + NPPSN

flops .
Comparing NF

flops and NP
flops, we observe that the latter is less

complex than the former because the partially-connected struc-
ture is exploited to reduce the analog precoding computational
complexity.

D. Achievable Rate Bounds
Now we conduct an asymptotic performance assessment

of the quantized hybrid precoder. Let us first consider the
received signal model (9) with Gaussian noise approximation
and hybrid precoding, then we employ SVD combining (with
respect to Heq = UΣVH) at the receiver, and finally decorre-
late the Gaussian noise vector nG to obtain an achievable rate
lower bound. From Equation (16), it follows that the rotated
received signal can be written as

ỹ = UHy = 1√
LRFNt

UHHeqΥbVΛ1/2s + 1√
LRF

UHHeqe + UHn

=
√

1−ρb
LRFNt

ΣΛ1/2s + ñ ∈ CNs ,

where ñ = 1√
LRF

ΣVHe + UHn ∈ CNs represents the ro-
tated total additive Gaussian noise component with covariance
matrix Rññ = 1

LRF
ΣVHReeVΣ+σ2

nINs
. After the whitening

filter, we have

R
−1/2
ññ ỹ =

√
1−ρb
LRFNt

R
−1/2
ññ ΣΛ1/2s + R

−1/2
ññ ñ.

This equation provides the following lower bound for the
achievable rate:

R ≥ log2 det
(
INs

+ 1−ρb
LRFNt

R
−1/2
ññ ΣΛΣR

−1/2,H
ññ

)
. (17)

For low-resolution quantization and high SNR, water-filling
power allocation yields Λ = (Pmax/Ns)INs

and (17) goes to

R ≥ log2 det
(
INs

+ Pmax(1−ρb)
LRFNtNs

R
−1/2
high Σ2R

−1/2,H
high

)
, (18)

where Rhigh = ΣVHReeVΣ. At low SNR, Rññ →
σ2
nINs

, and the achievable rate is lower bounded by R ≥
log2

[
1 + (1− ρb) γ

LRFNt
σ2

max

]
, where σmax denotes the largest

singular value of Heq and γ the SNR. Inequality (18) shows
that quantization noise dominates over AWGN in high SNR
regime, leading to saturation of the system capacity. The
obtained achievable rate expression at low SNR shows that
quantized system capacity is always smaller than that of
unquantized systems due to the factor (1 − ρb) inside the
logarithm.

IV. SIMULATION RESULTS

In this section, we present the results of numerical sim-
ulations conducted to evaluate the spectral and energy effi-
ciencies of the proposed precoding strategies. Also, the power
consumption model introduced in Section II-D is assessed.
Hereafter, hybrid precoding with fully- and partially-connected
PSN are referred to as HPF and HPP, respectively. The
obtained results are averaged over 1000 independent experi-
ments. For each experiment realization, a channel matrix with
L = 5 paths is generated according to Equation (11). We
assume that both transmitter and receiver have perfect and
instantaneous channel state information. We set the average
transmit power constraint to Pmax = 1W, which is reasonable
for base stations with small coverage. Also, in order to reduce
costs, the number Lt of RF chains is equal to the number
Ns of streams. We assume phase-shifters with phase range of
360◦ and shift resolution of bPS = 5 bits, as in the hardware
implementation of [31]. The DAC sampling rate is set to
Fs = 1 GHz, which should be sufficient for mmWave systems
to provide high data rates. Regarding the calculation of compu-
tational power consumption, we consider the same parameters
as in [21]: computational efficiency of Ec = 12.8 Gflops/s/W,
transmission bandwidth of B = 20 MHz, channel coherence
bandwidth of BC = 180 kHz, and channel coherence time of
TC = 10 ms, giving C = B/(BCTC) = 11111 coherence
blocks per second. The convergence tolerance value of the
iterative algorithms is set to 10−6. Preliminary simulations
have shown that the iterative algorithms used to compute HPF
and HPP converge within 37 and 11 iterations on average,
respectively.

A. Spectral Efficiency

Figures 2, 3, and 4 show the average spectral efficiency
of the digital and hybrid precoders as a function of the SNR
for DAC resolution of 1 and 8 bits. The curves depicted in
Figure 2 indicate that the quantized digital precoder does
not lose much spectral efficiency at low SNR, whereas its
performance saturates at high SNR. This is because quanti-
zation distortion does not drop at high SNR, as discussed in
Section III-D. Since the distortion caused by 1-bit DACs is
important, the spectral efficiency already saturates at 20 dB,
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Fig. 2: Spectral efficiency of digital precoders. Nt = 64, Nr =
4, Lt = Ns = 4, bDAC ∈ {1, 8}.

whereas it occurs only at > 40 dB for 8-bit DACs. The spectral
efficiency of lossless hybrid precoders using active and passive
phase-shifters is compared to that of the unquantized digital
precoder in Figure 3. As observed in several hybrid precoding
works, HPF outperforms HPP when RF hardware losses are
ignored. In this case, the type of phase-shifting circuit does
not have any impact on the spectral efficiency as no insertion
losses are considered yet. Comparing Figures 2 and 3, one
recognizes that hybrid precoding saturates at lower data rates
compared to digital precoding. This is because the quantization
distortion e is filtered by analog precoding matrix FRF, as
visible in Equation (5), increasing the total noise n′ power.
In general, digital precoding provides higher data rate than
hybrid precoding for fixed number of bits per DAC and SNR.

In Figure 4, the average spectral efficiency of the hybrid
precoders is shown considering RF hardware losses. In this
scenario, HPF performs similarly to HPP because its insertion
loss is larger than that of the other architecture, reducing
the effective transmit power and, consequently, the spectral
efficiency. When RF losses are taken into account, the phase-
shifting implementation becomes important. As shown in Fig-
ure 4, precoders with active phase-shifters are more spectral-
efficient since these components do not attenuate the signals
like passive phase-shifters, however they come with increased
power consumption. We observe in Figure 4 SNR losses of
10 dB for the active PSN and 20 dB for the passive PSN
when bDAC = 8. Similar losses have been reported in other
works [11], [43] for hybrid precoders with fully-connected
PSN. Such important power losses occur due to the large
number of lossy RF components employed in this mmWave
massive MIMO setup.

B. Power Consumption

The static power consumption is plotted as a function of
the number Nt of antennas for bDAC ∈ {1, 3, 5, 7} in the
left part of Figure 5. Despite the reduced number of RF
chains, active HPF can still be power hungry, even more
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Fig. 3: Spectral efficiency of hybrid precoders (ignoring RF
hardware losses). Nt = 64, Nr = 4, Lt = Ns = 4, bDAC ∈
{1, 8}.
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Fig. 4: Spectral efficiency of hybrid precoders (considering
RF hardware losses). Nt = 64, Nr = 4, Lt = Ns = 4,
bDAC ∈ {1, 8}.

than the digital precoder. This is mainly due to the power
consumption of the fully-connected PSN. To solve this issue,
one can employ passive phase-shifters, drastically decreasing
the power demand of HPF, as shown in Figure 5. However,
as observed in Figure 4, the use of such passive components
incurs in spectral efficiency degradation. Interestingly, passive
HPP consumes more power than passive HPF. This is because
the PAs in the former scheme consume more power than in
the latter, as partially-connected PSNs lose less power, hence
delivering more power to the amplifiers. One can also observe
in Figure 5 the effect of DAC resolution on the static power
consumption. Digital precoding is more sensitive to DAC
resolution because it uses Nt DACs, while hybrid precoding
uses only Lt.

In practice, computational power consumption plays an
important role on system energy efficiency. The plot in the
right part of Figure 5 suggests that it is negligible when the
antenna array is comparatively small (up to 64 antennas). By
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contrast, it becomes substantial for HPF and digital precoder
with growing Nt. HPP is not as power hungry since the
number of flops necessary to run Algorithm 2 scales linearly
with the number Nt of transmit antennas, whereas the other
schemes contain quadratic and cubic terms of Nt. We stress
that the proposed power consumption model mainly serves to
provide energy efficiency estimates, allowing us to compare
different precoding structures. In practice, optimized hardware
and software designs may reduce the values provided by our
model. For example, one can simplify PA, DAC, and modu-
lation design when employing 1-bit quantization. However,
considering such specialized implementations is out of the
scope of this work.

C. Energy Efficiency

Numerical experiments were also carried out to study the
energy efficiency of the proposed precoding strategies and
its trade-off with spectral efficiency when the RF hardware
losses are considered. The compromise between active and
passive phase-shifters is investigated as well. Mathematically,
we define the energy efficiency of a system as the ratio of
its spectral efficiency to its static power consumption [13].
Figures 6 and 7 show the energy-spectral efficiency curves
of different precoding schemes for varying DAC resolution at
high and low SNR, respectively. A system designer should
aim at maximizing both figures of merit, approaching the top
right corner of the chart in Figs. 6 and 7.

In contrast to what is usually claimed by several hybrid
precoding papers, Figures 6 and 7 indicate that HPF is not
necessarily an efficient scheme. This is because the combina-
tion of large insertion losses due to phase-shifters and power
combiners with the increased power consumption of fully-
connected PSN degrades the energy efficiency. Such insertion
losses are disregarded in most hybrid precoding works, leading
to the erroneous conclusion that fully-connected PSN is the
most spectral-efficient hybrid topology in general. As an alter-
native to HPF, transmitters equipped with partially-connected
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Fig. 6: Energy-spectral efficiency curves for varying DAC
resolution. SNR = 0 dB, Nt = 64, Nr = 4, Lt = Ns = 4,
bDAC ∈ {1, . . . , 8}.

PSNs lose less power by employing a reduced number of
phase-shifters and no power combiners at all. Therefore, as
observed in Figures 6 and 7, HPP can be more energy-
and spectral-efficient than HPF. These figures also reveal
that phase-shifter topology offers an energy-spectral efficiency
trade-off. As active phase-shifting amplifies the shifted signals,
it favors spectral efficiency. On the other hand, passive phase-
shifting offers negligible power consumption, promoting en-
ergy efficiency. Among the studied precoding methods, digital
precoding is the most spectral-efficient solution for obvious
reasons. Figure 7 indicates that digital precoding is as energy-
efficient as HPP at low SNR. In this scenario, digital precoding
compensates for the important power consumption by high
data throughput, thus increasing energy efficiency. Regarding
DAC resolution, Figures 6 and 7 also show that using bDAC > 3
does not necessarily ameliorate energy efficiency. In fact,
passive HPF and HPP and digital precoding become less
efficient for higher bit resolution.

Do the obtained energy efficiency results hold for other sce-
narios? For example, do they still hold for antenna arrays with
more elements? To answer this question, consider Figures 8
and 9, where the energy efficiency is plotted for different
(Nt, Ns) tuples at high and low SNR, respectively. These
plots were obtained by setting bDAC = 3, motivated by the
discussion above. In general, HPP is the most energy-efficient
scheme, followed by digital precoding, and HPF at both high
and low SNR. For Nt = 32 antennas and 0 dB SNR, passive
HPF becomes the most efficient solution as it provides enough
data throughput and its PSN does not dissipate too much
power due to the comparatively small number of phase-shifting
elements. As the number Nt of antennas increase, however,
its energy efficiency quickly drops. These results also suggest
that asymptotically expanding the transmit array size does
not improve energy efficiency, as static power consumption
becomes asymptotically large with Nt for fixed SNR, while
spectral efficiency does not grow as fast.
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V. CONCLUSION

MmWave Massive MIMO systems using hybrid precoding
with fully-connected PSN exhibit important power losses
mostly due to the large number of phase-shifters, power di-
viders and combiners. Such losses are not easily compensated
for with present mmWave PA technology, causing severe
spectral and energy efficiency degradation. As an alternative,
hybrid precoders equipped with partially-connected PSN are
shown to be energy-efficient, as they consume less power
and exhibit limited insertion loss. Our results revealed that
phase-shifting topology offers an energy-spectral efficiency
trade-off. Active phase-shifters favor higher data throughput,
while passive elements aim at energy efficiency. Moreover,
we observed that DACs with more than 3 bits of resolution
do not significantly improve spectral efficiency, and may lead
to energy efficiency degradation. Finally, the proposed power
consumption model suggests that computational power spend-
ing should be considered in the power budget of very large
array systems. The present work considered a point-to-point
MIMO system for simplicity reasons. Introducing interfering
users, performing transceiver optimization, and considering
imperfect channel state information are envisioned as future
work.

APPENDIX

We demonstrate that the power of the lossless transmitted
signal with DAC approximation (5) follows the average power
constraint for hybrid precoding. This power is defined as Px̃ =
E
[
‖x̃‖22

]
= tr(FRFΥbFBBFH

BBΥbF
H
RF) + tr(FRFReeF

H
RF).

From Equation (6), it follows that Px̃ can be rewritten as

Px̃ ≈ (1− ρb) ‖FRFFBB‖2F + ρb tr(FRF diag(FBBFH
BB)FH

RF).

We need to calculate the diagonal matrix diag(FBBFH
BB).

To do so, consider A = θIM . One can readily see
that diag(A) = Diag([tr(A)/M, . . . , tr(A)/M ]). Although
the diagonal elements of FBBFH

BB are not necessarily
equal, they should be similar due to power allocation,
yielding the following approximation diag(FBBFH

BB) ≈
Diag(tr(FBBFH

BB)/Lt, . . . , tr(FBBFH
BB)/Lt) ≈ ‖FBB‖2F /Lt.

This estimate gives

Px̃ ≈ (1− ρb) ‖FRFFBB‖2F + ρb
‖FBB‖2F ‖FRF‖2F

Lt
.

The baseband precoder normalization (16) leads to ‖FBB‖2F =
Pmax

‖FRFQ‖2F
tr(QQH). From water-filling power allocation,

tr(QQH) = Pmax, and the denominator can be written as
‖FRFQ‖2F = tr(FRFVΛVHFH

RF). Notice that we can approx-
imate QQH ≈ Pmax

Lt
ILt , therefore

‖FRFQ‖2F ≈
Pmax

Lt
tr(FRFF

H
RF) = NtPmax.

We finally get ‖FBB‖2F = Pmax/Nt and Px̃ ≈ [(1 − ρb) +
ρb]Pmax = Pmax. This result can be easily extended to digital
precoding by making FBB ∈ CNt×Ns and FRF = INt

.
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