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Glossary

ABS Average Beat Subtraction.

AF Atrial Fibrillation.

ALS Alternating Least-Squares.

AV Atrioventricular.

BSS Blind Source Separation.

BTD Block Terms Decomposition.

CPD Canonical Polyadic Decomposition.

CWT Continuous Wavelet Transform.

ECG Electrocardiogram.

EEG Electroencephalogram.

FIR Finite Impulse Response.

HOOI High-Order Orthogonal Iteration.

HOSVD High-Order Singular Value Decomposition.

ICA Independent Component Analysis.

IIR Infinite Impulse Response.

MPCA Multilinear Principal Component Analysis.

MRANC Multi Reference Adaptive Noise Cancellation.

MSE Mean Squared Error.

MSL Multilinear Subspace Learning.

PCA Principal Component Analysis.

SA Sinoatrial.

STC Spatiotemporal Cancellation.

STFT Short-Time Fourier Transform.

SVD Singular Value Decomposition.
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Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia detected by clinicians, affecting
mostly the elderly population. There is clinical evidence that AF is responsible of about one fourth of
the cerebrovascular accidents (brain strokes). Since its mechanisms are not yet well understood, it is
considered the “last great frontier” of electrophysiology. The non-invasive analysis of the AF can be
performed by analyzing the surface electrocardiogram (ECG). Arranged in matrix form for, the ECG
can be factorized by means of certain matrix decomposition techniques like principal component analysis
(PCA), independent component analysis (ICA) and their variants, permitting the identification of some
latent signals, called “sources”. The matrix decomposition approach is very interesting for artifacts
removal, AF complexity evaluation and prediction of the success of many therapies.

With the advent of the ECG as an analysis tool to assess the heart’s activity, physicians had to
learn how to interpret them in order to obtain medical conclusions. However sometimes there are some
details in the ECG that can be difficult to perceive or accurately calculate. Fortunately, with the aid
of computers and digital signal processing techniques, it is possible to obtain accurate quantitative
information from ECG [6]. AF caught the attention of the scientific community because its mechanisms
are not fully understood. In this case, ECG can be used to analyze the AF and give some insights about
its mechanisms. Specialized signal processing algorithms have been proposed to model and extract the
atrial fibrillation activity from ECG recordings [7, 8].

These techniques rely on well established matrix methods, namely Principal Component Analysis
(PCA) [9], Independent Component Analysis (ICA) [10] and their variants. These techniques explore
some a priori knowledge of the ECG signals and use them to obtain some “hidden” signal components
that describe interesting features, giving insights about the heart. This operation of extracting latent
signal components from a set of observation signals is known as blind source separation (BSS).

In recent years, multiway arrays, or tensors, have been applied to signal processing problems such
as wireless communications systems [11, 12], audio source separation [13], pattern recognition [14], etc.
Tensors can be seen as the generalization of matrices, arranging data in multiple dimensions (or modes).
Some advantages of this more flexible structure include the possibility of exploring the inherent multi-
dimensionality of some data. Colored images, for example, can be decomposed in three color channels,
easily being modeled as a third order tensor. Another advantage concerns the rank. The rank of a matrix
is bounded by its smallest dimensions, whereas this bound does not apply to tensors. In fact, there are
many definitions of rank for tensors [15].

An ongoing project between the “Biomed” and “Tensors” teams of the I3S laboratory aims at explor-
ing this multidimensional approach focused to the analysis of cardiac signals. This Master 2 internship is
engaged on this project. The proposed work consists of modeling ECG signals using the tensor framework
with the final objective of analyzing AF ECG signals.

In the following chapters, we will discuss some current methods for extracting AF sources from ECG
signals. Next, an introduction of tensor methods and possible ways to apply them to ECG signals will be
presented. Subsequently, a tensor-based BSS method will be employed to the extraction of AF sources
from ECG observations. Finally, we will discuss Multilinear Subspace Learning, which can be used to
describe the most important characteristics of an ECG signal.
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Chapter 1

Cardiac Electrophysiology

Cardiac electrophysiology is the study of the electrical activities of the heart. By analyzing it either by
invasive methods such as an endocardiac catheter or by noninvasive methods such as ECG, it is possible
to have some insight about the heart’s condition. Non invasive methods are very important nowadays
in clinical practice, since the physician can have a general idea about the heart of a patient in a rather
simple way. Initially we will discuss the electrical activity in the cellular level, fundamental to understand
the electrical heart’s mechanisms. Subsequently we will expand the discussion to the mechanical and
electrical cardiac activities in general and we will briefly present the ECG and the 12-lead standard
system. Finally, we will introduce the AF, a heart disease which is one keyword in this work.

1.1 Electrical Cellular Activity

The analysis of bioelectrical signals on the body surface aims at observing the general electrical activity
of the body cells and interpret them. In order to comprehend how the electrophysiology of the heart and
how the electrocardiogram is generated, it is important to understand the ionic exchanges in the cellular
level that generate the electrical activities of the human body.

A cell basically consists of a protoplasm enclosed within a membrane, which contains many biomolecules
such as proteins and nucleic acids [16]. This membrane is made of a poor conducting material and has
a permeability to certain substances, allowing them to enter or quit the cell via specific channels. Even
though the intra and extracellular contents are mostly water, an electrically neutral substance, there are
some ions that allow the electrical conductance.

Under resting conditions, the interior of the cell is negatively charged with respect to the outside.
This difference of voltage is caused by the different concentration of ions, resulting in a difference of
electrical charge. When a cell is stimulated by a current, rapid alterations in the membrane permeability
take place, resulting in a movement of ions called action potential. The action potential consists of
two phases. The first is the depolarization, in which the inside of the cell becomes less negative and
ultimately becomes positive due to the movement of ions. The second is the repolarization, during which
the potential returns to its resting level, so that the inside becomes more negative once again.

To illustrate the action potential phenomenon, let us consider the situation in which potassium ions
are assumed to be inside the cell, sodium ions are outside and the membrane potential is zero. When it
is perturbed by an external stimulus such as currents propagating from neighboring cells that are greater
than the threshold, the action potential is initiated. The depolarization takes place and the sodium
channels at the membrane are opened, so that sodium ions can move into the cell, making the interior
plus positive, thus less negative, until the polarity of the cell is reversed. Next, the sodium channels are
closed and potassium channels are opened, initiating the repolarization. Here, the potassium ions will
quit the cell, making the its interior less positive, thus more negative. Finally the original resting state
will be attained. An action potential propagates to neighboring cells, triggering new action potentials
until it reaches a point where the voltage is insufficient for further stimulation.

1.2 The Human Heart

The heart is a muscular organ of the circulatory system responsible for pumping oxygenated (arterial)
blood throughout the body and desoxygenated (venous) blood to the lungs. The wall of the heart is called
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myocardium and is composed of muscle cells that contract in the occurrence of an electrical stimulation.
The heart is divided in four cavities: left atria, left ventricle, right atria and right ventricle, as depicted
in Figure 1.1. A heart cycle consists of mechanical contractions within the heart cavities that make the
blood move. This cycle starts in the right atrium, where the desoxygenated blood arrives from the body
via the superior vena cava. Then, the right atrium is triggered to contract and push the blood to the
right ventricle. When it has been filled, it will contract and force the blood to the lungs. The venous
blood will be oxygenated in the lungs and taken to the left atrium via the pulmonary veins. Next, the
left atrium is contracted and forces the blood to the left ventricle, which will pump the oxygenated blood
to all the body through the arterial vessels. The metabolism of the cells will transform the oxygen in
carbon dioxide, desoxygenating the blood, which will be taken back to the heart via the venous system.

This whole mechanical process is generated and coordinated by electrical impulses. The heart cycle is
initiated in a group of cells called sinoatrial (SA) node that has the ability of spontaneously emit electrical
impulses. The SA node, situated in the upper part of the right atrium, will fire a depolarization impulse
that will make the atria contract. This impulse will propagate through the conduction system until
arriving at the atrioventricular (AV) node. This node will cause a delay of propagation which will
allow the atrial contraction to further increase the blood volume in the ventricles before they contract.
Subsequently, the impulse propagates in the wall between the two ventricles in a path called bundle of
His. Eventually this path is divided in a network of conductive fibers called Purkinje fibers, which will
trigger a strong and unified contraction in the ventricles. After the depolarization, the heart cells will
will undergo a repolarization, returning to the resting state, and then another heart cycle is ready to
start.

Figure 1.1: The human heart and its cavities. Original image created by Eric Pierce and licensed under
the Creative Commons Attribution Share- Alike 3.0 License.

1.3 The Electrocardiogram

The ECG is a tool developed in the 20th century that allows us to assess the electrical activity of the
heart. Electrodes are placed over the body surface to measure the voltage variations of some specialized
cardiac cell as they make the heart contract. The resulting signal in the ECG is manifested by a series
of waves whose morphology and timing can be used for describing the heart’s health.

The ECG consists of waves that describe the difference of voltage between a pair of electrodes, called
lead. A unipolar lead is measures the voltage variation of a single electrode in relation to a reference
electrode defined to have zero potential. A bipolar lead reflects the difference between two electrodes
placed over the body. These electrodes are connected to special amplifiers with high gain and large
dynamic range.

The most used ECG system is the standard 12-lead [16]. In this system, the 10 electrodes are placed
over the body as depicted in Figure 1.2. Let VLA and VRA and VLL denote voltage in left arm, right arm
and left leg, respectively. The 12-lead ECG system consists of

• Three bipolar limb leads denoted I, II and III. They measure the voltage difference between the
arms and between the arms and the left leg. The position of the electrodes which correspond to
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Figure 1.2: The standard placement os electrodes for the 12-lead ECG system [1].

the arms and the left leg can be viewed as the corners of a triangle with the heart at its center.
This triangle is known as Einthoven’s triangle.

• Three augmented unipolar limb leads denoted aVF, aVL and aVR. These leads use the same
electrodes as the bipolar limb leads, but are defined as voltage differences between one corner of
Einthoven’s triangle and the average of the remaining corners.

• Six unipolar precordial leads V1, . . . , V6. They are placed on the left front of the chest, giving a
more detailed reflection of the heart’s activity. Since these leads are placed close to the heart, they
have higher amplitudes than the limb leads.

A typical ECG lead from a healthy subject consists of a P wave, the QRS complex and the T
wave (Figure 1.3). The P wave reflects the depolarization of the atria. The QRS complex reflects
the depolarization of the ventricles and the T wave reflects the ventricular repolarization. Some ECG
intervals describe the heart’s state. The RR interval, for example, is measured as the length between
two successive R waves and indicates the ventricular rate.
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Figure 1.3: Sinus rhythm ECG indicating the P, Q, R, S, T waves [2].

The spectrum of the ECG is mostly concentrated between 0 Hz and 40 Hz as shown in Figure 1.4.
The P and T waves are usually below 10-15 Hz, considered to be low-frequency components, while the
QRS complex is mostly concentrated between 10 Hz and 50 Hz. The ECG may present some noise
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and artifact components that may deteriorate its quality. Baseline wander is a low-frequency component
below 1 Hz related to respiration and body movements that makes the isoelectric line fluctuate. Powerline
interference is caused by proximity of certain equipment and improper grounding of the ECG equipment.
Electromyographic noise, or simply muscle noise, originates from contraction of skeletal muscles during.
Moving the electrodes while the ECG is being recorded may generate some artifacts in the ECG. These
interferences may be canceled by using signal processing techniques such as notch filters [16] and adaptive
filters [17].

Figure 1.4: Power spectrum of an ECG signal [3].

1.4 Atrial Fibrillation

AF is a cardiac arrhythmia characterized by uncoordinated atrial activation. Its causes are not very
well understood. Indeed, it is considered as “last great frontier of cardiac electrophysiology” [18]. The
most popular hypothesis that explains its mechanisms is the multiple wavelet reentry. Depolarization
wavefronts are fractioned due to alteration in the conduction system of the atria, generating reentry
wavelets, which randomly activate the AV node, resulting in a disorganized ventricular contraction.

This heart condition is quite common in the clinical practice, affecting about 10% of the elder popu-
lation. Due to the irregular atrial and ventricular contractions, there may be a formation of blood clots,
which might cause cerebral vascular accidents. AF is often treated with medication to correct the heart
rhythm, and catheter ablation methods are used to prevent recurrence of AF.

AF can be classified according to the frequency of episodes in a patient. When it happened after two
or more times, AF is considered recurrent. If it terminates spontaneously, it is considered paroxysmal.
Persistent AF is considered when the arrhythmia is sustained beyond a week.

In the ECG, the AF is reflected as an irregular oscillation that replaces the P wave and is mostly
visible in the TQ interval, specially in leads II, III, aVF and V1. These random oscillations are known
as fibrillatory waves, or simply f-waves (Figure 1.5). They may present several levels of disorganization
according to the stage of development of the disease. The atrial flutter is an associated arrhythmia
related to AF and it is reflected in the ECG as a sawtooth shaped wave in the TQ segment. If not
treated, atrial flutter may degenerate into AF.

In this chapter we have introduced the basic elements of cardiac electrophysiology, AF mechanisms
and how they are connected to an ECG. In the following chapters, we will analyze ECG signals in order
to obtain information about AF.
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Figure 1.5: An ECG recording of an subject presenting Atrial Fibrillation.
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Chapter 2

Atrial activity extraction in ECG
recordings

In this work we focus on the problem of atrial activity extraction for ECG. During an AF episode, atrial
activity corresponds to the f-waves, which bring information and features very important to understand-
ing AF mechanisms, analyzing the disorganization level of AF, inferring the development of the disease,
and even predicting the success of different therapies to treat the arrhythmia, such as catheter ablation.
In the following, we will review the existent techniques for atrial activity extraction. We will focus
on matrix methods, which can be divided in three different approaches: adaptive noise cancellation,
spatiotemporal cancellation and blind source separation.

2.1 Multi-Reference Adaptive Noise Cancellation

Figure 2.1: Block diagram of the adaptive noise cancellation filter.

Consider an observation signal x(t) composed of a desired signal d(t) (or latent source) and an
interference signal b(t). Then,

x(t) = d(t) + b(t). (2.1)

We seek to suppress the noise signal b(t) to estimate our desired signal d(t). To do so, we suppose that
reference signals {z1(t), z2(t), . . . , zR(t)} are available and that they are correlated with the interference
signal b(t) but uncorrelated with the desired signal d(t).

This problem formulation can be solved by means of the multi-reference adaptive noise canceling
(MRANC) [19, 17], where a filter continuously adapts its coefficients to estimate a desired signal from
a set of observation signals. Either Finite Impulse Response (FIR) or Infinite Impulse Response (IIR)
filters can be adopted to solve this problem. However, due to its simplicity and assured stability, a FIR
filter will be considered.

Consider a set of R FIR filters of order M with impulse response {wr(0), wr(1), . . . , wr(M − 1)}Rr=1.
The desired signal will be estimated by subtracting approximated versions of b(t) from the observation
signal x(t). These approximations are obtained by filtering the reference signals zr(t) for r = 1, . . . , R
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with the FIR filters. Then, the estimated desired signal is

d̂(t) = x(t)−
R∑
r=1

wr(t) ∗ zr(t) (2.2)

= x(t)−
R∑
r=1

(
M∑
k=0

wr(k)zr(t− k)

)
(2.3)

= x(t)−wT z(t), (2.4)

where
w = [w1(0), . . . , w1(M − 1), w2(0), . . . , w2(M − 1), . . . , wR(0), . . . , wR(M − 1)]

T

is the reference filters coefficients vector and

z(t) = [z1(t), . . . , z1(t−M), z2(t), . . . , z2(t−M), . . . , zR(t), . . . , zR(t−M)]
T

is the delayed samples of the reference signals (Figure 2.1).

Consider the output of the filter, denoted d̂(t):

d̂(t) = x(t)−wT z(t) (2.5)

= d(t) + b(t)−wT z(t) (2.6)

The criterion to be optimized in order to find the filter coefficients w that will lead to an optimal
estimation of d(t) is defined as

w∗ = arg min
w

E
{(

d̂(t)− d(t)
)2
}
. (2.7)

Let ε = E
{(

d̂(t)− d(t)
)2
}

. Then the problem (2.7) is solved by setting ∇ε = 0 and solving for w.

Then

∇ε =
∂

∂w

[
E
{(

d̂(t)− d(t)
)2
}]

(2.8)

=
∂

∂w
E
{(
d(t) + b(t)−wT z(t)− d(t)

)2}
(2.9)

=
∂

∂w

[
E
{(
b(t)−wT z(t)

)2}]
(2.10)

=
∂

∂w

[
E
{
b2(t)− 2b(t)wT z(t) + wT z(t)z(t)Tw

}]
(2.11)

= −2E {b(t)z(t)}+ 2E
{
z(t)z(t)T

}
w. (2.12)

Let Rz = E
{
z(t)z(t)T

}
and p(t) = E {b(t)z(t)}, setting the equation (2.12) to 0:

Rzw = p(t) (2.13)

and the optimal filter is
w∗ = R−1

z p(t). (2.14)

The equation (2.13) is known as the Wiener-Hopf equation. The optimal solution decorrelates the output

of the filter d̂(t) with the reference signals z(t) which are assumed to model b(t). This decorrelation makes

d̂(t) be the best estimation of d(t) in the MSE sense.
In practice, d(t) is not known. So we can reformulate the optimization criterion to

w∗ = arg min
w

E
{
d̂(t)2

}
. (2.15)

Let ε′ = E
{
d̂(t)2

}
. Using the same assumptions as before, let us develop it:

ε′ = E
{
d̂(t)2

}
(2.16)

= E
{(
d(t) + b(t)−wT z(t)

)2}
(2.17)

= E
{
d2(t) + 2d(t)

(
b(t)−wT z(t)

)
+
(
b(t)−wT z(t)

)2}
(2.18)

= E
{
d2(t)

}
+ E

{(
b(t)−wT z(t)

)2}
. (2.19)
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Hence

min
w

E
{
d̂(t)2

}
≡ min

w
E
{(
b(t)−wT z(t)

)2} ≡ min
w

E
{(

d̂(t)− d(t)
)2
}
.

The optimal filter can be obtained either by the equation (2.13) or iteratively by means of a gradient-
descent algorithm

w(k+1) = w(k) − µ∇ε(w(k)). (2.20)

If we use instantaneous gradient estimates, the expectation will drop and then (2.20) becomes

w(k+1) = w(k) − 2µz(t)
(
x(t)−w(k)T z(t)

)
. (2.21)

The scalar µ is known as adaptation step and must verify 0 < µ < 1/λmax, where λmax is the dominant
eigenvalue of Rz.

In the context of atrial activity extraction, we desire to cancel the QRST complex, which corresponds
to the ventricular activity. Then let us model it as the interference b(t) uncorrelated to the atrial activity
d(t). The observation input x(t) will correspond to an electrode lead while the reference signals z(t)
are chosen to be correlated with b(t), but uncorrelated to d(t). In practice, we choose them as ECG
observation collected next to the ventricular sources. Clearly, the quality of estimation will be subject
to a good positioning of the reference electrodes. This technique is also very sensible to ectopic beats,
which may disturb the convergence of the transveral filters. Moreover, we can not always assure that the
references signals are correlated to the QRST complex b(t) and uncorrelated to the atrial activity d(t).
The performance of this technique depends of the well placement of the electrodes, so that the reference
signals will be decorrelated, fulfilling the hypothesis cited above.

2.2 Spatiotemporal Cancellation

The QRST complex corresponds to the electrical manifestation of the ventricular activity in the ECG.
Thus, suppressing the QRST complex from the ECG may result in an estimate of the f-wave. The
Average Beat Subtraction (ABS) [20] is a popular technique that consists of estimating a beat template
by synchronously averaging the QRST complex in the entire ECG observation and then subtracting it
from the observation in one lead. In a multi-lead scenario, this procedure is repeated for each lead.
Before calculating the average beat, the QRST complexes are detected and aligned, then each heart
beat is segmented into QRST complex and atrial activity. Subsequently the average beat is calculated
by using the ensemble average or the median beat. After generating a template of average beats, it is
subtracted from the original ECG signal. Even though the ABS is a simple and intuitive method, it is
sensitive to alterations in the electrical axis of the heart, manifested in different leads, resulting in large
QRST residuals.

This problem can be mitigated by using the spatiotemporal cancellation (STC) method [4]. Let
X ∈ RN×R be the data vector with R leads and N samples. The average beat X̄ ∈ R(N+2∆)×R will
contain 2∆ additional samples in order to allow the temporal alignment of X relative to X̄ performed
by the shift matrix

Jτ =
(
0N×(∆+τ) IN×N 0N×(∆−τ)

)
N×(N+2∆)

where τ denotes an integer time shift, 0 and I denote the zero and the identity matrix respectively.
Assuming that the atrial activity XA and the ventricular activity XV are statistically decoupled, the
data matrix can be decomposed as

X = XA + XV + N. (2.22)

The ventricular activity is assumed to be an average beat X̄ aligned in time by Jτ and in space by
S ∈ RR×R in the following way:

XV = Jτ X̄S. (2.23)

The matrix S shifts data between the leads to compensate the variation on the electrical axis and scales
the leads to compensate variations in amplitudes in different leads. These compensation can be performed
by a rotation matrix Q ∈ RR×R and a scaling matrix D ∈ RR×R. Then

S = DQ. (2.24)
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We desire to calculate XV by estimating D, Q and τ and cancel it from the original data X. We need to
devise an optimization criterion to find the optimal parameters of XV . Combining the equations (2.22)
and (2.23), we have

X− Jτ X̄S = XA + N (2.25)

Note that both the noise N and the atrial activity XA limits the model fitting. This problem can be
mitigated by introducing an initial estimate X̃A of XA and subtracting it from X. This estimate can be
obtained from TQ segments in a AF ECG observation. Then (2.25) becomes

Y − Jτ X̄S = N + XA − X̃A (2.26)

where Y = X− X̃A. The optimal parameters are estimated by minimizing the estimation error

ε2
min = min

D,Q,τ
||Y − Jτ X̄DQ||2F , (2.27)

where tr(·) is the trace operator. This error can be written as

ε2 = tr(YYT ) + tr(Jτ X̄DDT X̄TJTτ )− 2tr(DT X̄TJTτ YQT ). (2.28)

It is difficult to find a closed-form solution to this problem, thus an alternate iterative minimization
algorithm is used. The error is minimized by maximizing the last term of equation (2.28) under the
assumption that D is known. Let T = DT X̄TJTτ Y, then the term to be maximized is now written as
2tr(TQT ). The matrix T assumes a SVD T = UΣVT . Then 2tr(TQT ) is maximized for [21]

Q̂ = UVT . (2.29)

Next, (2.29) is substituted into (2.28) and the error is minimized with respect to D. Finally the diagonal
entries of D are calculated by

d̂r =
([

Jτ X̄
]T
:r

[
Jτ X̄

]
:r

)−1 ([
Jτ X̄

]T
:r

[
ZQ−1

]
:r

)
, r = 1, . . . , R. (2.30)

The optimal τ is found by means of a grid search in the possible interval of alignment [−∆,∆]. For each
value of τ in the grid search, the equations (2.29) and (2.30) are calculated in an alternate fashion until
the difference of the squared error ||Y−Jτ X̄DQ||2F in two successive iterations is smaller than a certain
threshold. Finally, the τ value which attains the smallest error value will be chosen as the optimal. A
solution close to Q = D = I , indicating that almost no spatial alignment would be required, is desirable.
Then we initialize this algorithm with D0 = I.

2.3 Blind Source Separation

The MRANC technique is based on the existence of reference signals that respect a couple of constraints,
which are not always verified. The ABS and the spatiotemporal cancellation methods suppose that the
QRST complex is quasi-periodic, which may not always be true due to the variations that occur in some
patients. Furthermore these methods are not well prepared to deal with ectopic beats.

Lately [7, 22, 23, 24], a BSS approach based on linear instantaneous mixtures has been used to extract
atrial activity from multilead ECG. Consider the instantaneous linear mixture model:

Y = MS (2.31)

where Y ∈ RK×N is the observation matrix of K leads and N time samples, M ∈ RK×R is an unknown
mixing matrix that describes the propagation characteristics of the body and S ∈ RR×N is a matrix
that contains R unknown source signals. In practice, the only available information is the output ECG
Y, thus we need to estimate the sources signals and mixing matrix in (2.31), characterizing this as
a BSS problem. In order to uniquely determine these matrices, we need to make some assumptions.
For instance, suppose that Y is an ECG data matrix. We can argue that during AF, the atrial and
ventricular activities are considered to present a certain statistical independence. Hence, we can impose
this independence constraint to uniquely determine M and S. In the following, we will discuss two
techniques used to solve the BSS problem (2.31): PCA, which supposes decorrelation between sources,
and ICA, which assumes high-order independence.
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The BSS problem is affected by the scale and permutation ambiguities. A scale factor/permutation
can be interchanged between a source and its mixing matrix column without modifying the observation. A
greedy method, discussed in the appendix A, can be used to estimate the correct scaling and permutation
of the estimated vectors and their unmixing columns. Note that although the model (2.31) does not
take into account noise, in practice it is present. Nevertheless, the methods discussed in the following
subsections are able to tackle this noise, as we will see.

2.3.1 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical tool that transforms a set of possibly correlated
data into a set of uncorrelated data, called principal components [25, 9]. Consider a data vector y ∈ RN
with E[y] = 0. One of the definitions of the PCA is that it performs the data decorrelation by finding a
set of projection vectors, or principal directions. The projection vectors wk ∈ RN with ||wk|| = 1, k =
1, . . . ,K, project the data y to a scalar zk, called kth principal component, that will have maximum
variance. We need to find the set of principal directions w, that will maximize the variance of the
corresponding projections zk = wT

k y. The vector w1 will maximize the projected variance, thus

w∗1 = arg max
||w1||=1

E[z2
1 ] (2.32)

= arg max
||w1||=1

E[
(
wT

1 y
)2

] (2.33)

= arg max
||w1||=1

E[wT
1 yyTw1] (2.34)

= arg max
||w1||=1

w1Ryw1. (2.35)

Since w1 has unit-norm, we can write (2.35) as

w∗1 = arg max
w1

w1Ryw1

wT
1 w1

(2.36)

The quantity to be maximized is a Rayleigh quotient. Thus it will be maximized when w1 is the most
significant eigenvector, which corresponds to the largest eigenvalue of Ry. The kth component can be
found by subtracting the first (k − 1) first components vectors zkwk from y:

yk−1 = y −
k−1∑
s=1

zsws (2.37)

and then finding the vector wk that will maximize the projected variance of zk = wT
k yk−1:

w∗k = arg max
wk

wkRyk−1
wk

wT
k wk

. (2.38)

It turns out that this gives the remaining eigenvectors of Ry. Let Ry = UDUT be the eigendecom-
position of the data covariance matrix. Since the principal vectors are the eigenvectors of Ry, i.e. the
columns of U, then

z = UTy (2.39)

y = Uz, (2.40)

where z = [z1, z2, . . . , zN ]
T

.
We can extend this definition of PCA to matrices, storing sample realizations of the several random

vectors containing N samples of random variable yk. Let yk ∈ RN×1 be a measurement column vector.
We arrange K measurement vectors in the rows of the matrix Y ∈ RK×N . The first principal vector
w1 ∈ RK×1 will maximize the variance of the projected vector z1 = YTw1:

w∗1 = arg max
||w1||=1

zT z (2.41)

= arg max
||w1||=1

w1
TYYTw1 (2.42)

= arg max
w1

w1
TRYw1

w1
Tw1

. (2.43)
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Similarly to the vector case, the quantity to be maximized will be maximum when w1 is the eigenvector
associated with the largest eigenvalue of RY. Let

RY = UDUT (2.44)

be the eigendecomposition of YYT . Then

Z = UTY (2.45)

Y = UZ (2.46)

where U ∈ RK×K is the principal directions matrix and Z ∈ RK×N is the principal components matrix.
Finally, we can check that the principal components are uncorrelated. Consider the covariance matrix
of the principal components RZ:

RZ = E[ZZT ] = UTRYU = D, (2.47)

whose diagonal structure shows indeed that the rows of Z are uncorrelated.
The PCA will transform original data into a uncorrelated data, which is easier to analyze, due to the

second-order independence of its principal components. However, not all principal components need to
be kept. If a principal component is not significant, we can ignore it in the principal components matrix
Z. Consider the principal components and principal direction matrices with only M rows ZM ∈ RM×N
and UM ∈ RK×M , respectively. Then ZM = UT

MY. If we we discard some principal components with
small correspondent eigenvalue, the total squared reconstruction error ||UZ −UMZM ||2 will be small.
This property allows us to perform dimensionality reduction on data, by representing it only as its M
most significant principal components.

PCA solution to the BSS problem

The data matrix Y assumes a SVD
Y = ÛΣV̂

T
, (2.48)

where Σ = (σk) is a K × N rectangular diagonal matrix of the singular values σk, Û ∈ RK×K is
the left singular vectors matrix and V̂ ∈ RN×N is the right singular vectors matrix. Both Û and V̂
are orthogonal matrices and we assume that the columns of the source matrix S have unit norm and
uncorrelated.

We can link it to the PCA in the calculation of the covariance matrix of Y:

RY = YYT (2.49)

= MSSTMT (2.50)

= MMT . (2.51)

On the other hand, the covariance matrix RY can be estimated via the ensemble average:

RY =
1

N
YYT . (2.52)

Substituting (2.48) into (2.52):

RY =
1

N
ÛΣV̂T V̂ΣÛT (2.53)

=
1

N
ÛΣ2ÛT . (2.54)

Comparing (2.51) and (2.54), we see that M̂PCA = 1√
N

ÛΣ. Hence, the remainder factors of the SVD

(2.54) give the source matrix ŜPCA =
√
NV̂T .

Note that the PCA solution to the BSS supposes that the mixing matrix has orthogonal columns
due to the left singular matrix. If M does not conform to this requirement, PCA will fail to perform the
BSS. In the problem of atrial activity extraction, imposing an orthogonal structure to the mixing matrix
may not correspond to a practical possibility due to the proximity of the atrial and ventricular sources.
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2.3.2 Independent Component Analysis

PCA assumes that the mixing matrix M has orthogonal columns, which is a strong constraint. We can
relax these constraints on the mixing matrix and impose a stronger constraint on the source matrix. ICA
[26] admits that the sources are independent, typically up to fourth order. Even though it is a strong
constraint, it is not an unrealistic assumption. Indeed in AF, the atrial and ventricular components have
a certain degree of independence.

Furthermore, to be able to uniquely retrieve the independent sources, we have to assume that the
sources are non-Gaussian. To see why, consider the following scenario. Let s = [s1, s2, . . . , sN ]

T
be

a vector of independent variables sn with identical distribution, an arbitrary full-rank mixing matrix
M ∈ RN×N and an observation vector y = [y1, y2, . . . , yN ]

T
. Considering the instantaneous linear

mixture model, we have y = Ms. To estimate one of the independent components, we consider a linear
combination of yn, expressed as ŝ = wTy, where w is a projection vector to be determined. If w was
one of the columns of the inverse of M, it would recover an independent component directly. However,
we do not know the M in practice. Nevertheless, an estimation can be found based on the Central Limit
Theorem which affirms that the distribution of a sum of independent random variables tends toward a
Gaussian distribution under certain conditions. Let us define g = MTw. Then ŝ = wTy = wTMs =
gT s, we verify that ŝ is a linear combination of sn weighted by gn. According to the Central Limit
Theorem, the sum ŝ = gT s = g1s1 + g2s2 + . . .+ gNsN is more Gaussian than any of the sn. This sum
ŝ becomes less Gaussian when it equals only one of the sn. In this case, the projection vector would
be g = [0, 0, . . . , gn, . . . , 0]

T
, leading to ŝ = gnsn. Observe that finding a projection that maximizes the

nongaussianity of the projection, would lead to an independent component sn. Then, to estimate it, we
could take a g with only one nonzero element that maximizes the nongaussianity of ŝ = wTy = gT s,
resulting in an independent component sn.

In order to measure the nongaussianity of a random variable, we will adopt its fourth order cumulant
as measurement defined by

Cum(zi, zj , zk, zl) = µijkl −RijRkl −RikRjl −RilRjk. (2.55)

where z ∈ RM is a random vector, µijkl = E {zizjzkzl} is a fourth order moment of z and Rmn represents
[Rz]mn = E {zmzn}. It can be show that when z is made of Gaussian random variables, its fourth order
cumulant is zero for every index (i, j, k, l). The kurtosis of a random variable z is defined as its fourth
order cumulant:

kurt(z) = Cum(z, z, z, z) = E
{
z4
}
− 3

(
E
{
z2
})2

(2.56)

If the kurtosis of z is negative, it is called a subgaussian variable, exhibiting a “flat” pdf. Moreover,
when the kurtosis of z is positive, it is called a supergaussian variable, often taking values around zero.

Before discussing the estimation of the independent sources, let us assume that there are M mutually
statistical independent sources in which at least (M −1) are non gaussian. Next, we will discuss an algo-
rithm for performing the estimation of the independent components by maximizing the nongaussianity
of the estimated values.

RobustICA

Let y be an observation vector, w a vector that will project y to ŝ = wTy, the estimation of the
independent component s. We seek finding w that will lead to an optimal estimation of s. Let the
Kurtosis Maximization criterion Ψ is defined be defined by:

Ψ(ŝ) =
kurt(ŝ)

E {ŝ2}2
=

E
{
ŝ4
}
− 3

(
E
{
ŝ2
})2

E {ŝ2}2
(2.57)

The RobustICA algorithm [27] consists of maximizing the criterion by finding a suitable search
direction which will lead to the global optimum of the criterion. The search direction can be defined
as the gradient of the criterion (2.57), ∇Ψ(ŝ) . The extraction vector can be iteratively estimated as
w(i+1) = w(i) +ηi∇Ψ(ŝ) until the convergence is attained according to a suitable stopping criterion. The
step parameter ηi is automatically found by RobustICA at each iteration. After the convergence, one
independent source can be obtained by projecting the observation vector y into the estimated extraction
vector. If more than one source are to be extracted, we employ this method several times. After
extracting one source, it has to be removed from the observation vector, so it will not be estimated
again.
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The ICA framework can be used to extract the atrial activity in initial stages of AF ECG [7]. In
this context, the amplitude of the atrial activity signal presents an organized and highly nongaussian
behavior, motivating the use of ICA. Indeed, the statistical independence implied by nongaussianity
has a physiological justification. During AF, the wavefronts generated by the sino-atrial node affects
the atrio-ventricular node in a random way, generating uncoupled atrial and ventricular activities. This
rupture of synchronism between these activities leads to their (approximate) statistical independence.

However, in more developed stages of AF, the amplitude of the atrial activity becomes more disorga-
nized, presenting a quasi-Gaussian probability distribution. Thus some additional steps have to be used
in order to recover the AF amplitude activity. In [22], the atrial activity has been extracted in a two-step
procedure. First of all, classical ICA detects the components that correspond to the ventricular activity,
which presents a nongaussian distribution. The remaining components are composed of atrial activity
and noise. The second step consists of extracting the atrial activity from these remaining components
by employing a technique known as Second-Order Blind Identification (SOBI) [28]. Basically it will
separate sources with narrow-band spectra, which is the case of atrial activity. Among the components
obtained from SOBI, the atrial activity can be finally retrieved by inspecting the spectral concentration
around their fundamental frequency. Narrow peaks in the 3-9 Hz frequency band may indicate the atrial
activity.

The narrowband characteristic of the atrial activity during AF is also exploited by a technique called
RobustICA-f [27]. It exploits the sparsity of the AF signal in the frequency domain caused by its narrow
spectral support. Hence, in the frequency domain, the atrial signal will have a strong kurtosis, justifying
the suitability of the ICA approach based on higher-order stationarity.

In this chapter, we have discussed some matrix methods for atrial activity extraction from ECG.
Two powerful source extraction techniques, PCA and ICA, were introduced as a BSS approach. In the
following chapters, we will introduce a tesor-based BSS technique to atrial activity extraction from ECG
signals.
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Chapter 3

Tensor models

Lately, multilinear algebra methods, or tensor methods, have been applied to solve problems related to
signal processing in fields such as wireless communications systems [11, 12], audio source separation [13],
pattern recognition [14], etc. Tensors present some interesting properties. Some tensor decompositions
are guaranteed to be unique under mild conditions. This allows blind identification and source separation
with fewer sensors or samples in some cases. Aiming at applying tensor methods to biomedical signal
processing, now we discuss the fundamentals of tensor models and possible ways of modeling ECG signals
as tensors.

3.1 Definitions

Originally the term tensor was introduced in the 19th century to denote a multilinear map from one
subspace to another [29]. But several decades ago, it started to be employed to denote a multilinear
array of data, as will be the case in this report.

Consider a Nth order tensor X ∈ RI1×I2×...×IN whose elements are represented by xi1i2···iN . The
order of a tensor is defined as the number of its dimensions. From this definition, it is straightforward
to see that scalars can be considered as zeroth-order tensors, vectors as first-order tensors and matrices
as second-order tensors. Indeed tensors subsume these data structures.

Subarrays can be obtained from a tensor by fixing one or more indices while varying the others.
Fibers are defined as fixing every element index but one. For example, the mode-1 fibers of X are given
by x:i2...iN where “:” denotes the full range of the corresponding index. Matrix slices are defined as fixing
all but two indices. For instance, the frontal slices of a third tensor A ∈ RI1×I2×I3 are A::i3 ∈ RI1×I2 for
i3 = 1, . . . , I3. Fibers are the generalization of row/columns and slices are multidimensional sections of
a tensor.

3.2 Operations

Tensors can be transformed into matrices by means of a linear mapping. A tensor element (i1, i2, . . . , iN )
can be mapped into a matrix at (in, j) where

j = 1 +

N∑
k=16=n

(ik − 1)Jk with Jk =

k−1∏
m=1 6=n

Im

However this definition does not express intuitively this operation. Equivalently the n-mode matricization
(or unfolding) X(n) ∈ RIn×I1I2···In−1In+1···IN of the Nth order tensor X is obtained by setting its columns
as the mode-n fibers of X .

The outer product (M ◦ N ) ∈ RI1×...×IN×J1×...×JQ between the tensors M ∈ RI1×I2...×IP and
N ∈ RJ1×J2...×JQ is defined as

(M◦N )i1i2...iP j1j2...jQ = mi1i2...iP nj1j2...jQ . (3.1)

The Frobenius norm of a tensor X ∈ RI1×I2×...×IN is defined as

‖X‖F =

√√√√ I1∑
i1

I2∑
i2

. . .

IN∑
iN

x2
i1i2...in

. (3.2)
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The inner product of two identically sized tensors P,Q ∈ RI1×I2×...IN is defined as

〈P,Q〉 =

I1∑
i1

I2∑
i2

. . .

IN∑
iN

pi1i2...iN qi1i2...iN (3.3)

It is easy to see that 〈X ,X〉 = ||X ||2F .
The mode-n product between a Nth order tensor X ∈ RI1×I2×...×IN and a matrix U(n) ∈ RJ×In

results in a tensor Y = X ×n U(n) of size I1× I2 . . .× In−1×J × In+1 . . .× IN . Its elements are given by

yi1i2...in−1jin+1...iN =

In∑
in=1

xi1i2...iNu
(n)
jin

The mode-n product can be equivalently defined as the product between the mode-n fibers of X and the
matrix U(n). This product can be expressed by unfolding the tensor X in the nth mode and multiplying
the unfolded tensor X(n) by U(n). The result is the unfolded version of the mode-n product:

Y(n) = U(n)X(n).

Let X ∈ RI1×I2×...×IN , Y ∈ RJ1×J2×...×JN and U(n) ∈ RIn×Jn . The mode-n product

Y = X ×1 U(1)T ×2 U(2)T . . .×N U(N)T

can be expressed by means of the Kronecker product:

Y(n) = U(n)X(n)

(
U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

)T
(3.4)

3.3 Rank

Unlike matrices, an interesting aspect of tensors is that they have many definitions of rank. Indeed some
definitions of rank are not bounded by the dimensions of the tensor. An Nth order rank-one tensor
B ∈ RI1×I2×...IN is formed by the outer product of N vectors vn ∈ RIn×1 for n = 1, . . . , N :

B = v1 ◦ v2 . . . ◦ vN

The rank of a Nth order tensor X is defined as the minimum number of rank 1 tensors whose sum
generates X . Although its definition is analogue to the matrix rank, they are different in some aspects.
First of all, the rank of a real valued tensor may be different over R and C. Secondly, there are no simple
algorithms to calculate it. Let the mode-n rank of X denote the dimension of the subspace spanned by
its mode-n fibers. A tensor X is said to have multilinear rank (R1, R2, . . . , RN ) if the rank of X(n) equals
Rn for n = 1 . . . N . Let the Kruskal rank kM of M be defined as the maximum value k such that any k
columns of M are linearly independent. This definition will be useful later for assuring the uniqueness
of the CPD decomposition.

3.4 Tensor Decompositions

In this section, the Tucker and the Canonical Polyadic decompositions will be discussed for Nth order
tensors.

3.4.1 Tucker Decomposition

The Tucker decomposition was first introduced by Tucker in 1963 [30]. It decomposes a tensor in a core
tensor multiplied by a matrix along each mode. For a Nth order tensor Y ∈ RI1×I2...×NIN , its Tucker
decomposition is

Y = G ×1 A(1) ×2 A(2) . . .×N A(N) (3.5a)

= JG,A(1),A(2), . . . ,A(N)K (3.5b)

=

R1∑
r1=1

. . .

RN∑
rN=1

gr1,...,rN A(1)
:r1 ◦A(2)

:r2 ◦ . . . ◦A(N)
:rN (3.5c)
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Figure 3.1: The Tucker Decomposition for a third order tensor.

where G ∈ RR1×R2...×RN is the core tensor, A(n) ∈ RIn×Rn for n = 1, . . . , N are the factor matrices,

gr1,...,rN are the elements of G and A
(n)
:rn is the rnth column of A(n). The elements of Y are

yi1i2...iN =

R1∑
r1=1

. . .

RN∑
rN=1

gr1,...,rNa
(1)
i1r1

a
(2)
i2r2

. . . a
(N)
iNrN

, (3.6)

and its unfolded tensor in the mode-n (3.4) is

Y(n) = A(n)G(n)

(
A(N) ⊗ . . .⊗A(n+1) ⊗A(n−1) ⊗ . . .⊗A(1)

)T
. (3.7)

Tucker decompositions are not unique. Consider the tensor G ∈ RP×Q×R, its factor matrices
AP×P ,BQ×Q, CR×R and the non-singular matrices UP×P , VQ×Q and WR×R. Then the relationship

JG,A,B,CK = JG ×1 U×2 V ×3 W,AU−1,BV−1,CW−1K

shows that there are infinite Tucker decomposition for a given tensor. By imposing some constraints,
however, it may become unique. For instance, consider a Nth order tensor T = JS,A(1),A(2), . . . ,A(N)K.
If A(n) for n = 1, 2, . . . , N are column-wise orthonormal and S is all orthogonal, i.e. all tensor slices of
order (N − 1) are mutually orthogonal in every mode, then its Tucker decomposition will be unique [31].
This constrained decomposition is called Higher-Order SVD (HOSVD). Other constraints such as non-
negativity and sparsity can be imposed upon this model, leading to Nonnegative Tucker Decompositions
(NTD) [32].

The Tucker decomposition T = JG,A(1),A(2), . . . ,A(N)K can be calculated by means of the HOSVD.
It consists of performing the SVD of T(n) = UnΣnVT

n and making A(n) = Un for n = 1, . . . , N .

Finally G = X ×1 A(1)T ×2 A(2)T . . .×N A(N)T . However, the HOSVD is not optimal in giving the best
fit considering the norm of the difference. Then, De Lathauwer et al [33], proposed the Higher-Order
Orthogonal Iteration (HOOI). Let X ∈ RI1×I2×...×IN . Then the HOOI aims at solving the following
problem:

min
G,A(1),...,A(N)

∥∥∥X − JG,A(1),A(2), . . . ,A(N)K
∥∥∥
F

(3.8)

subject to
G ∈ RR1×R2×...×RN

and
A(n) ∈ RIn×Rn column-wise orthogonal for n = 1, . . . , N.

Having predefined R1, . . . , RN , the solution of the problem (3.8) can be computed by means of a Alter-
nating Least-Squares (ALS) [34]:

Step 1 Initialize A(n) for n = 1, . . . , N using HOSVD.

Step 2 While the algorithm has not converged, repeat:

• for n = 1, . . . , N
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– Calculate Ĝ = X ×1 A(1)T . . .×(n−1) A(n−1)T ×(n+1) A(n+1)T . . .×N A(N)T .

– Set A(n) as the Rn most significant left eigenvectors of Ĝ(n).

Step 3 Calculate G = X ×1 A(1)T ×2 A(2)T . . .×N A(N)T .

Timmerman and Kiers [35] devised an automatic procedure to choose the numbers of components to use
in a Tucker analysis which they called “DIFFIT” (DIFFerence In fiT).

3.4.2 Canonical Polyadic Decomposition

Another possibility of assuring the uniqueness of the Tucker model is imposing a diagonality constraint
upon the core tensor. Consider the elements of the constrained core tensor D ∈ RR×R...×R:

dr1r2...rn =

{
dr, if r1 = r2 = . . . = rn
0, otherwise.

The equation (3.5) becomes

Y = D ×1 A(1) ×2 A(2) . . .×N A(N) (3.9)

= JD,A(1),A(2), . . . ,A(N)K (3.10)

=

R∑
r=1

drA
(1)
:r ◦A(2)

:r ◦ . . . ◦A(N)
:r (3.11)

where R is a positive constant, A(n) ∈ RIn×Rn for n = 1, . . . , N are the factor matrices and A
(n)
:rn is the

rnth column of A(n). Often the elements dr absorb the length of the columns of the factor matrices.
The equation (3.9) is called Canonic Polyadic Decomposition (CPD), also known as PARAFAC [36].

Figure 3.2: The CPD of a third order tensor.

The tensor D can be considered to be an identity tensor I, with

dr1r2...rn = δr1r2...rn .

From now on, we will consider the CPD with identity core tensor. The elements of Y are given by

yi1i2...iN =

R∑
r=1

a
(1)
i1r
a

(2)
i2r
. . . a

(N)
iNr

. (3.12)

Note that the CPD reveals immediately the rank of a tensor. Let Y be a Nth order tensor. Its mode-n
unfolded tensor is

Y(n) = A(n)
(
A(N) � . . .�A(n+1) �A(n−1) � . . .�A(1)

)T
(3.13a)

= A(n)V{n}
T

, 1 ≤ n ≤ N, (3.13b)

where “�” denotes the Khatri-Rao product, defined as the columnwise Kronecker product. A uniqueness
condition of CPD was devised by Sidiropoulos and Bro [37], which affirms that CPD is essentially unique
if

N∑
n=1

kA(n) ≥ 2R+ (N − 1)
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where N is the order of the tensor, R is the rank of the tensor and kA(n) is the Kruskal rank of the
factor matrix A(n). Recently, more relaxed conditions have been obtained when one factor matrix has
full column rank [38]. A recent condition devised by Domanov and De Lathauwer requires only that the
components are “sufficiently different” and there are not many of them [39].

Several constraints such as sparsity, non-negativity, smoothness, structured matrix factors etc., can
be applied to the CPD model. There are many decompositions that result from constraints in this model,
like PARATUCK [40], CONFAC [41], etc.

In order to calculate the CPD of Y ∈ RI1×I2...IN , we need to solve the following problem

min
Â(1)...Â(N)

∥∥∥Y − JI, Â(1), . . . , Â(N)K
∥∥∥
F
. (3.14)

where Â(n) ∈ RIn×Rn for n = 1, . . . , N, are the estimated factor matrices. There are three groups
of algorithms to calculate the CPD: alternating, gradient-based and direct (non-iterative) algorithms
[42]. We will briefly discuss the calculation of CPD by means of the Alternating Least-Squares (ALS),

which belongs to the first group of algorithms. It will solve (3.14) for Â(n) while fixing the others factor
matrices and will continue the entire procedure until the convergence according to a defined criterion.
This method supposes that the number of components R is known. Bro and Kiers [43] proposed a
consistency diagnostic called CORCONDIA that indicates if a given R is suitable for a decomposition.
The CPD-ALS algorithm can be summarized as follows:

Step 1 Initialize the factor matrices Â(n) for n = 1, . . . , N .

Step 2 While the algorithm has not converged, repeat

• for n = 1, . . . , N

– Â(n) = X(n)
(
Â(N) � . . .� Â(n+1) � Â(n−1) � . . .� Â(1)

)T
3.5 Multilinear ECG signals

Recently, EEG signals have been modeled as Space-Time-Frequency (STF) tensors. In [44, 45], a STF
tensor was obtained by calculating Short-Time Fourier Transform (STFT) matrices from observation
electrodes and stacking them in a tensor. Subsequently, this tensor was decomposed by means of CPD
to perform artifact detection and noise removal. Continuous Wavelet Transform (CWT) could also be
used to obtain STF tensors, in which the frequency would correspond to wavelet scale. The EEG signals
were later recovered by employing an inverse transformation in each spatial slice of the STF tensor.

Inspired by the recent work on multilinear EEG signals, Huang and Zhang [46] proposed a feature
extraction method for ECG signals based on STF ECG tensors. The ECG signals were segmented in
heartbeats, and then the data in all leads corresponding to each segmented heartbeat were transformed
in a tensor by stacking their STFT matrices. In that paper, there was not a discussion about the trade-
off between the STFT’s window length and the spectral resolution, which is fundamental for obtaining
precise results in ECG analysis. Hunyadi et al [47] built a STF tensor from EEG data using CWT
with a Mexican hat wavelet. Analogously, an ECG STF tensor can be built by performing the CWT of
each ECG lead using a DB-5 wavelet, which [48] pointed to be well adapted to capture important ECG
features.

An interesting fact of STF ECG tensors is that they are considerably sparse. Since the spectrum of
ECG is concentrated mostly in the 0 Hz - 50 Hz range (Section 1.3), its frequency-domain representation
will be mostly sparse for 1 kHz sampling rates. Sparsity is an interesting property that can be explored,
for example, by compressive sensing techniques [49].

In [50], Niknazar et al. proposed an extraction of event-related sources via robust tensor decom-
position. They explore the event-related nature of ECG signals to construct a data tensor with space,
event-synchronized window and time as modes. Each heartbeat is placed in an observation matrix and
synchronized relative to the R peak of different heart beats. These matrices are then stacked in a third-
order tensor. They apply this modeling for fetal ECG extraction. After building the event-synchronized
tensor, it is decomposed in a modified CPD that permits the extraction of low power sources compared
to others sources, such as fetal ECG compared to the maternal ECG.

In this chapter, we have presented some basic definitions of tensors and some decompositions such as
CPD and Tucker. In the next chapter, another decomposition will be introduced and applied in the BSS
problem. Subsequently, we will use this decomposition for extracting atrial activity from ECG signals.
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Chapter 4

Block Term Decomposition

In Chapter 2, we have discussed BSS approaches to the atrial activity extraction based on matrix methods
that explore some statistical parameters of the atrial components. Recently, De Lathauwer [51] proposed
a new tensorial approach to solve the BSS problem based on a tensor decomposition in block terms. In
this chapter, we will discuss the BSS method based on this Block Term Decomposition (BTD) and assess
its performance to extract the atrial activity from AF ECG signals.

4.1 Definitions

Consider a third order tensor T ∈ RI1×I2×I3 . Its BTD [52] in rank-(Lr, Lr, 1) terms is defined as

T =

R∑
r=1

Er ◦ cr, (4.1)

in which Er ∈ RI1×I2 has rank Lr and cr ∈ RI3×1. If we decompose

Er = D(1)
r D(2)T

r (4.2)

=

Lr∑
r′=1

d
(1)
r,r′ ◦ d

(2)
r,r′ , (4.3)

in which d
(1)
r,r′ ∈ RI1×1, d

(2)
r,r′ ∈ RI2×1, D

(1)
r =

[
d

(1)
r,1 , . . . ,d

(1)
r,Lr

]
I1×Lr

and D
(2)
r =

[
d

(2)
r,1 , . . . ,d

(2)
r,Lr

]
I2×Lr

,

then (4.1) can be written as

T =

R∑
r=1

(
D(1)
r D(2)T

r

)
◦ cr (4.4)

=

R∑
r=1

(
Lr∑
r′=1

d
(1)
r,r′ ◦ d

(2)
r,r′

)
◦ cr (4.5)

Each rth term of (4.5) is rank-(Lr, Lr, 1). The elements of T are defined as

Figure 4.1: Block Term Decomposition in rank-(Lr, Lr, 1) terms.
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(T )i1i2i3 =

R∑
r=1

(Er)i1i2 (cr)i3 . (4.6)

Note that

(Er)i1i2 =

Lr∑
r′=1

(
D(1)
r

)
i1r′

(
D(2)
r

)
i2r′

(4.7)

=

Lr∑
r′=1

(
d

(1)
r,r′

)
i1

(
d

(2)
r,r′

)
i2

(4.8)

Then substituting (4.8) into equation (4.6):

(T )i1i2i3 =

R∑
r=1

[
Lr∑
r′=1

(
d

(1)
r,r′

)
i1

(
d

(2)
r,r′

)
i2

]
(cr)i3 . (4.9)

The uniqueness of this decomposition is discussed in the following theorem, proved in [52].

Theorem 1. Let D(1) =
[
D

(1)
1 ,D

(1)
2 , . . . ,D

(1)
R

]
, D(2) =

[
D

(2)
1 ,D

(2)
2 , . . . ,D

(2)
R

]
and C = [c1, c2, . . . , cR].

The decomposition in block terms of rank-(Lr, Lr, 1) of T ∈ RI1×I2×I3 with I1, I2 ≥
∑R
r=1 Lr will be

essentially unique, i.e., unique up to trivial indeterminacies, if

• D(1) ∈ RI1×
∑R

r=1 Lr and D(2) ∈ RI2×
∑R

r=1 Lr have full column rank

• C ∈ RI3×R does not have proportional columns,

This is the power of BTD for underdetermined BSS. While in matrix methods for BSS we need to
assume that the unmixing matrix (related to C) is full-column rank, BTD relaxes this assumption. It
only needs that the columns of C are not proportional.

4.2 Blind Source Separation via BTD

This tensorial decomposition can be used to address the Blind Source Separation (BSS) problem as-
suming a certain source model. Consider the instantaneous linear mixture model (2.31). Let Yk: =
[yk(0), yk(1), . . . , yk(N − 1)] denote the kth row of Y and Sr: the rth row of S. Let H (·) be an operator
that maps an input vector v ∈ RN×1 to a Hankel matrix H (v) ∈ RN×N . Then, consider the Hankel
matrices H (Yk:) obtained from the rows of Y and stacked in a third-order tensor Y ∈ RN×N×K so that
the frontal slices are given by:

(Y)::k = H (Yk:) =


yk(0) yk(1) . . . yk(N − 1)
yk(1) . . . yk(N − 1) 0

... . .
.

0
...

yk(N − 1) 0 . . . 0

 , (4.10)

for k = 1, . . . ,K. Note that for Hankel matrices, the element (i, j) equals the element (i − 1, j + 1) for
i, j = 1, . . . , N . From equation (2.31), we know that

yk(n) =

R∑
r=1

mk(r)sr(n) (4.11)
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Figure 4.2: Hankel matrices H(Sr:) being scaled by mk(r), revealing the outer product structure in each
r.

in which mk(r) and sr(n) are elements of M and S respectively. Substituting (4.11) into (4.10):

(Y)::k =


∑R

r=1 mk(r)sr(0)
∑R

r=1 mk(r)sr(1) . . .
∑R

r=1 mk(r)sr(N − 1)∑R
r=1 mk(r)sr(1) . . .

∑R
r=1 mk(r)sr(N − 1) 0

... . .
.

0
...∑R

r=1 mk(r)sr(N − 1) 0 . . . 0



=

R∑
r=1

mk(r)


sr(0) sr(1) . . . sr(N − 1)
sr(1) . . . sr(N − 1) 0
... . .

.
0

...
sr(N − 1) 0 . . . 0




=

R∑
r=1

mk(r)H (Sr:) . (4.12)

In equation (4.12), for a fixed r and k = 1, . . . ,K, the matrix H (Sr:) is scaled by mk(r) as depicted in
Figure 4.2. This implies that for a fixed r, the outer product between H (Sr:) and M:r, the rth column
of M, is being performed. Now considering every r, we have:

Y =

R∑
r=1

H (Sr:) ◦M:r, (4.13)

which is equivalent to the BTD model (4.1). The mixing matrix can be estimated by grouping the vectors

M:r in a matrix. Let M̂:r be the estimated mixing vectors from (4.13), then the estimated mixing matrix

will be M̂ =
[
M̂:1, M̂:2, . . . , M̂:R

]
. If M has full column rank with K ≥ R, then the estimated source

matrix Ŝ can be obtained from (2.31) by inverting M̂ as:

Ŝ = M̂†Y, (4.14)

where (·)† is the Moore-Penrose pseudoinverse. However, if M is rank-deficient orK ≤ R (sub-determined

problem), then inverting M̂ is not possible. Nevertheless, consider the Hankel matrix associated with
the rth row of S obtained from (4.13):

H (Sr:) =


sr(0) sr(1) . . . sr(N − 1)
sr(1) . . . sr(N − 1) 0

... . .
.

0
...

sr(N − 1) 0 . . . 0

 .
Observe that the element sr(n), n = 0, . . . , (N − 1) can be obtained by averaging the (n + 1)th anti-

diagonal of H (Sr:). Let H
(
Ŝr:

)
be the estimation of H (Sr:) obtained from (4.13). Thus, the element
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ŝr(n) of the estimated source matrix Ŝ can be obtained by averaging the (n+ 1)th anti-diagonal of the

H
(
Ŝr:

)
for r = 1, . . . , R and n = 0, . . . , (N − 1).

The BSS will be achieved if the decomposition (4.13) is essentially unique. To assure this uniqueness,
a constraint upon the sources obeying the Theorem 1 needs to be imposed. Suppose that they can be
expressed as linear combinations of exponentials:

sr(n) =

Lr∑
lr=1

clr,rz
n
lr,r, 0 ≤ n ≤ (N − 1), 1 ≤ r ≤ R. (4.15)

where Lr is the number of exponential terms, clr,r is the linear coefficient of the lrth term in elements
of the rth row and znlr,r is the base of the exponential associated to the lrth term of sr(n) (also called
pole in [53]). Then S can be written as

S =


∑Lr

lr=1 clr,1z
0
lr,1

∑Lr

lr=1 clr,1z
1
lr,1

. . .
∑Lr

lr=1 clr,1z
N−1
lr,1∑Lr

lr=1 clr,2z
0
lr,2

∑Lr

lr=1 clr,2z
1
lr,2

. . .
∑Lr

lr=1 clr,2z
N−1
lr,2

...
. . .

...∑Lr

lr=1 clr,Rz
0
lr,R

∑Lr

lr=1 clr,Rz
1
lr,R

. . .
∑Lr

lr=1 clr,Rz
N−1
lr,R


and the Hankel matrix H (Sr:) ∈ RN×Nof the rth row will be:

H (Sr:) =


∑Lr

lr=1 clr,rz
0
lr,r

∑Lr

lr=1 clr,rz
1
lr,r

. . .
∑Lr

lr=1 clr,rz
N−1
lr,r∑Lr

lr=1 clr,rz
1
lr,r

. . .
∑Lr

lr=1 clr,rz
N−1
lr,r

0
... . .

.
0

...∑Lr

lr=1 clr,rz
N−1
lr,r

0 . . . 0

 . (4.16)

This Hankel matrix admits the Vandermonde decomposition [54]:

H (Sr:) = Vrdiag(c1,r, . . . , cLr,r)V
T
r (4.17)

in which the Vandermonde matrix Vr ∈ RN×Lr is defined by

Vr =


1 1 . . . 1
z1,r z2,r . . . zLr,r

...
...

...

zN−1
1,r zN−1

2,r . . . zN−1
Lr,r

 , (4.18)

as discussed in [53]. Since a Vandermonde matrix generated by distinct poles has full column rank Lr,
then the rth term in (4.13) is rank-(Lr, Lr, 1), 1 ≤ r ≤ R. If the matrix M ∈ RK×R does not have
proportional columns and all the poles zlr,r are distinct for 1 ≤ lr ≤ Lr, 1 ≤ r ≤ R, then the matrices

D(1)′ = [V1,V2, . . . ,VR] diag (c1,1, c2,1, . . . , cLR,R) ∈ RN×
∑R

r=1 Lr

and
D(2)′ = [V1,V2, . . . ,VR] ∈ RN×

∑R
r=1 Lr ,

have full column rank like matrices D(1) and D(2) in Theorem 1, fulfilling the conditions of the essential
uniqueness of the BTD. Thus the BSS can be performed by either inverting M̂ or averaging the antidi-
agonals of H (Sr:) for r = 1, . . . , R. To tackle the scaling and permutation indeterminacies, refer to the
Greedy Method explained in the Appendix A.

The BSS-BTD method can be summarized as the following:

Step 1 Build the observation matrix Y.

Step 2 For each line of Y, create a Hankel matrix.

Step 3 Create a tensor Y by stacking up the Hankel matrices.

Step 4 Perform the BTD on the tensor Y.

Step 5 Estimate the mixing matrix M̂ from the BTD. If M is full-rank, estimate the source matrix as
in equation (4.14), otherwise estimate the source matrix directly from the Hankel matrices.
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4.3 Calculating the BTD

Consider the BTD model (4.1). Let

F
(1)
D =

[
d

(1)
1,1, . . . ,d

(1)
1,L1

, . . . ,d
(1)
R,1, . . . ,d

(1)
R,LR

]
I1×

∑R
r=1 Lr

(4.19)

F
(2)
D =

[
d

(2)
1,1, . . . ,d

(2)
1,L1

, . . . ,d
(2)
R,1, . . . ,d

(2)
R,LR

]
I2×

∑R
r=1 Lr

(4.20)

and
FC = [c1, c2, . . . , cR]I3×R . (4.21)

Note that matrices F
(1)
D and F

(2)
D are built by arranging the

∑R
r=1 Lr vector components from the rank-

Lr matrices D
(1)
r and D

(2)
r for r = 1, . . . , R. This model can be interpreted as a structured CPD with

factor matrices

A(1) = F
(1)
D (4.22)

A(2) = F
(2)
D (4.23)

A(3) = FCE, (4.24)

in which E is an R×
∑R
r=1 Lr block-diagonal matrix diag (11×L1

, . . . ,11×LR
) in which the rth block on

the diagonal is the row vector 11×Lr . It will repeat the rth column of FC Lr times along the columns
of A(3) for r = 1, . . . , R.

The unfolded tensor T(n) can be now defined by means of the CPD factor matrices

T(n) = A(n)V{n}
T

, 1 ≤ n ≤ N (4.25)

in which V(n) is the Khatri-Rao product between the factor matrices, not including A(n), as defined in
(3.13). Let T̂ be an estimate of T . Then the residual tensor FBTD is defined by

FBTD = T̂ − T . (4.26)

The mode-n unfolding of FBTD is

F(n) = Â(n)V̂{n}
T

−T(n), (4.27)

where T̂(n) = Â(n)V̂{n}
T

and T(n) are the mode-n unfolding of T̂ and T respectively. Based on the
residual tensor definition, we formulate a non-linear problem

min
A(1),A(2),A(3)

fBTD, (4.28)

where fBTD = 1
2 ||FBTD||

2
F . In the following subsections, two families of optimization methods will be

discussed in order to solve the problem (4.28).

General unconstrained optimization and Alternating Least-Squares

Gradient-based unconstrained optimization methods such as the nonlinear conjugate gradient and quasi-
Newton can be used for minimizing the objective function fBTD. The quasi-Newton and Alternating
Least-Squares (ALS) approaches will be discussed in this subsection.

Let
c· denote the concatenation of its argument with its complex conjugate, i.e.

c
c = (c, c) and let z

be the vector of unknowns

z =

[
vec
(
A(1)

)T
, vec

(
A(2)

)T
, vec

(
A(3)

)T]T
.

Since this vector will be updated over the iterations, it can be indexed as zk. Consider the second-order

model mfBTD

k (
c
p) of the objective function fBTD(

c
zk) with search direction

c
p at the kth iteration

mfBTD

k (
c
p) = fBTD(

c
zk) +

c
p
T ∂fBTD(

c
zk)

∂
c
z

+
1

2

c
p
H
Bk

c
p, (4.29)
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in which Bk is a Hermitian positive definite matrix that is updated at every iteration. The minimizer of
the convex quadratic model (4.29) is obtained by setting the model’s conjugate complex gradient equal
to zero [55], resulting in

c
p
∗
k = −B−1

k

∂fBTD(
c
zk)

∂
c
z

(4.30)

(p∗k,p
∗
k) =

(
−B−1

k

∂fBTD(zk)

∂z
,−B−1

k

∂fBTD(zk)

∂z

)
. (4.31)

Deriving an expression for ∂fBTD(zk)
∂z enables us to compute the the search direction (4.30). Let Wσ =

∗Nn=1,n/∈σ A(n)HA(n) where ∗ is the elementwise Hadamard product. Then

∂fBTD
∂z

=

(
vec

(
∂fBTD
∂A(1)

)T
, vec

(
∂fBTD
∂A(2)

)T
, vec

(
∂fBTD
∂A(3)

)T)T
, (4.32)

where

2
∂fBTD
∂A(1)

= F
(1)
D W{1} −T(1)V

{1}, (4.33)

2
∂fBTD
∂A(2)

= F
(2)
D W{2} −T(2)V

{2}, (4.34)

2
∂fBTD
∂A(3)

= FCEW{3}ET −T(3)V
{3}ET . (4.35)

Refer to [56] for the proof of these relationships. The ALS solution to this problem consists of alter-
nately setting to zero the partial gradients (4.33), (4.34) and (4.35), from which each factor matrix

{F(1)
D ,F

(2)
D ,FC} is computed. The factor matrix F

(n)
D for n = 1, 2 is obtained in the following way:

F
(n)
D W{n} −T(n)V

{n} = 0

F
(n)
D W{n} = T(n)V

{n}

F
(n)
D = T(n)V

{n}
(
W{n}

)†
(4.36)

and for FC:

FCEW{3}ET −T(3)V
{3}ET = 0

FCEW{3}ET = T(3)V
{3}ET

FC = T(3)V
{3}ET

(
EW{3}ET

)†
. (4.37)

Although the ALS is simple and effective, it may not converge to a stationary point and is sensitive to
swamps, where the convergence is very slow for many iterations. Severeal approaches such as Tikhonov
regularization and exact line search can be used to mitigate the swamp effects.

Nonlinear least-squares methods

Methods like Gauss-Newton or Levenberg-Marquadt can also be used to solve (4.28). In these methods,
the residual tensor FBTD is approximated by the linear model

mFBTD

k (
c
p) = vec

(
FBTD(

c
zk)
)

+
∂vec

(
FBTD(

c
zk)
)

∂
c
z
T

c
p (4.38)

and used in the modified quadratic model of the objective function

mfBTD

k (
c
p) =

1

2
||mFBTD

k (
c
p)||2 +

λk
2
|| cp||2, (4.39)

where λk is the Levenberg-Marquadt regularization parameter. In the Gauss-Newton method, λk =

0 ∀k. Subsequently, to minimize the objective function mfBTD

k (
c
p), a preconditioned conjugate gradient

(PCG) algorithm is used with an ALS-based algorithm to estimate the factor matrices. The heavy
calculations are performed in the PCG step, resulting in faster ALS updates. This refined ALS adds
robustness to this nonlinear least-squares method while increasing its computational complexity, even
though it is still competitive with ALS for simpler problems.
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Parameter case A case B

Frequency, f0 6 Hz 8 Hz
Frequency variation, ∆f 0.2 Hz 0.3 Hz

Frequency variation frequency, ff 0.1 Hz 0.23 Hz
Harmonics, M 5 3
Amplitude, al 150 µV 60 µV

Amplitude variation, ∆al 50 µV 18 µV
Amplitude variation frequency, ωa 0.08 Hz 0.5 Hz

Table 4.1: Parameters for the two AF patterns, as in the paper [4].

4.4 Application to Atrial Signal Extraction in AF ECG

The BSS-BTD method is a new deterministic BSS solution based on a linear combination of exponentials
model for the sources, which is not an unrealistic assumption for biomedical signals. Recently, Hunyadi
et al [47] successfully employed the BTD-BSS method in the analysis of channel × time × frequency
EEG tensors during epileptic seizures. Their CPD decomposition is defined by a sum of rank 1 terms
with one spatial, temporal and spectral signature. This rank constraint does not allow their approach
to model more complex signals such those which present a certain degree of nonstationarity. Thus they
have proposed the BTD in rank-(Lr, Lr, 1) terms as a solution to model more involved signals such as
EEG signals during an epilepsy episode.

In this section, we seek to extract the atrial activity of ECG during AF episodes by means of BSS-
BTD and analyze its performance. To this end, we will adopt the procedure suggested in [6, 8], used to
assess the performance of an atrial source extraction algorithm. This procedure consists of generating a
synthetic AF signal and superimposing it to a sinus rhythm ECG with the P waves properly removed,
and then compare the AF signal estimated by the algorithm and the synthesized AF signal.

The most established AF model in the literature was proposed by Stridh and Sornmo [4], and consists
of a non-stationary signal that mimics the sawtooth-similar shape of the atrial flutter, an arrhythmia
closely connected to the AF. The model consists of a sinusoid and (M − 1) harmonics both amplitude
and frequency modulated. Thus the f-wave is modeled by

y(n) = −
M∑
i=1

ai(n) sin(iθ(n)) (4.40)

where ai(n) is the modulated amplitude, given by

ai(n) =
2

iπ

(
a+ ∆a sin 2π

fa
Fs
n

)
(4.41)

in which a is the sawtooth amplitude, ∆a is the modulation peak amplitude and fa is the amplitude
modulation frequency. The phase θ(n) defined as

θ(n) = 2π
f0

Fs
n+

(
∆f

ff

)
sin 2π

ff
Fs

n (4.42)

varying sinusoidally around f0 with maximum frequency deviation ∆f and modulation frequency ff .
The two AF patterns described by Stridh are considered in this paper: large amplitude and long cycle
length (case A) and low amplitude with shorter cycle length (case B), as shown in Figure 4.3. The
parameters model for each case are summarized in Table 4.1.

A 10 s sinus rhythm 8-leads ECG (I, II, V1-V6) from the PTB Diagnostic ECG Database [2] was
acquired at a sampling rate of 1 kHz. A forward-backward bandpass type II Chebyshev IIR filter with
cut-off frequencies at 0.5 Hz and 30 Hz was used to remove the baseline wander and powerline interference.
Next, the beginning and the end of the P waves associated with the first two heart beats were manually
annotated and interpolated by means of a spline interpolation. The resulting signal was stored in a
matrix S ∈ R8×2000.

Subsequently, a window consisting of the first 1200 samples from all leads was extracted from S and
downsampled at a rate of 10, resulting in a data matrix Sd ∈ R8×120. Afterwards, a synthetic AF signal
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Figure 4.3: Waveforms for the synthetic AF model.

with length of 1.2 s was generated and acquired at a sampling rate of 100 Hz and stored in a vector
y ∈ R120×1. The resulting data matrix is given by

Y(γ, σ) = Sd + γayT + σB

where Y(γ, σ) ∈ R8×120 is the observation ECG data matrix, a ∈ R8×1 is an unit-length random vector
of spatial scales of the AF signal, γ is the power factor of the AF components, B ∈ R8×120 is a normalized
white Gaussian noise matrix and σ is the power factor of the noise matrix.

Subsequently, Hankel matrices were obtained from the 8 rows of Y(γ, σ) and stacked along the third
dimension, as explained in Section 4.2, resulting in a tensor Y ∈ R120×120×8. In order to calculate the
BTD decomposition, its parameters need to be selected, i.e. number of block components and their
multilinear rank. Since we know the desired AF source signal, we can calculate the rank of its associated
Hankel matrix and use it as Lr. Henceforth, let us denote l = [L1, L2, . . . , LR] a vector whose components
corresponds to the multilinear rank of the rth BTD component. For instance, let l = [2, 3, 4, 5], then
the first BTD component will be rank-(2, 2, 1), the second will be rank-(3, 3, 1), and so on. The Lr value
changes with the AF signal parameters as show in Figure 4.4. For each set of parameters proposed by
Stridh and Sornmo (Table 5.1), denoted as case A and case B, the rank of their corresponding Hankel
matrix is shown in Figure 4.4.

The power of a signal represented in a matrix M with N elements is defined as PM = 1
N ||M||F . Let

A = γayT denote the atrial activity matrix, V = Sd the ventricular activity matrix and PN = σB. We
define the Atrial-Ventricular Ratio (AVR) as

AV R =
PA

PV
, (4.43)

and the atrial Signal-to-Noise Ratio (SNR) as

SNR =
PA

PN
. (4.44)

If we normalize ayT and B by their power, then PA = γ and PN = σ. In the following experiments, we
will set some values for AV R and SNR then find the parameters γ and σ for calculating Y(γ, σ). Let

M ∈ RP×Q. Its root mean squared (RMS) value is RMS(M) =
√

1
PQ

∑P
p=1

∑Q
q=1m

2
pq.

First experiment

The first experiment consists of extracting the case A synthesized AF source from a noiseless ECG with
AV R = −10 dB (Figure 4.5). Since the AF source is known, its Hankel matrix was calculated and
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Figure 4.4: Variation of Lr with the number of harmonics M for a certain fundamental frequency f0

fixed.

the rank of this matrix was used as the multilinear rank of each tensor component. According to the
Figure 4.4, Lr = 48 for the case A. In this experiment, the AF source was extracted by BSS-BTD with
l = [48, 48, 48] (Figure 4.6) and some benchmark methods, such as PCA (Figure 4.7) and RobustICA-f
(Figure 4.8). Next, a Monte Carlo simulation consisting of 20 runs was performed by varying the SNR
(Figure 4.9). The noise matrix N and the vector of spatial scales a were generated at each experiment.
Finally the root mean squared value of the error between the estimated and generated AF signals was
calculated.
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Figure 4.5: Generated ECG signal for the case A AF source with AV R = −10 dB (lead II).
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Figure 4.6: Case A AF source extracted by BSS-BTD.
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Figure 4.7: Case A AF source extracted by PCA.
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Figure 4.8: Case A AF source extracted by RobustICA-f.
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Figure 4.9: Monte Carlo simulation for estimating the performance of the source extraction algorithms
under noise in experiment 1 (case A AF source with 8 ECG leads).
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Second experiment

Now we consider extracting the case B of AF source from a noiseless ECG with AV R = −10 dB (Figure
4.10). The AF source was extracted by BSS-BTD with l = (42, 42, 42, 42) (Figure 4.11) as well as some
benchmark methods, such as PCA (Figure 4.12) and RobustICA-f (Figure 4.13). Next, a Monte Carlo
simulation consisting of 20 runs was performed in the same fashion as the first experiment (Figure 4.14)
and the root mean squared error was calculated.
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Figure 4.10: Generated ECG signal for the case B AF source with AV R = −10 dB (lead II).
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Figure 4.11: Case B AF source extracted by BSS-BTD.
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Figure 4.12: Case B AF source extracted by PCA.
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Figure 4.13: Case B AF source extracted by RobustICA-f.
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Figure 4.14: Monte Carlo simulation for estimating the performance of the source extraction algorithms
under noise in experiment 2 (case B AF source with 8 ECG leads).
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Third experiment

Now the BSS-BTD will be compared to PCA and RobustICA-f with minimial spatial diversity, i.e., using
only two leads (I and II) for the extraction of case A of AF model. We consider AV R = −10 dB and
an ECG observation of 2.2 s (4.15). The AF source was estimated by BSS-BTD with l = (77, 77, 77, 77)
(Figure 4.16). The sources estimated by PCA and RobustICA-f are depicted in Figures 4.17 and 4.18),
respectively. A first Monte Carlo simulation consisting of 20 runs was performed by varying the SNR
(Figure 4.19). A second Monte Carlo simulation was performed by varying the number of leads (Figure
4.20) for SNR = 15. Like the first simulation, 20 runs was performed.

0 50 100 150 200 250
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

sample

m
V

Figure 4.15: Generated ECG signal for the case A of AF source with AV R = 0.1 (lead II).
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Figure 4.16: Case A AF source extracted by BSS-BTD using two leads.
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Figure 4.17: Case A AF source extracted by PCA using two leads.
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Figure 4.18: Case B AF source extracted by RobustICA-f using two leads.
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Figure 4.19: Monte Carlo simulation for estimating the performance of the source extraction algorithms
under noise in experiment 3 (case A AF source, two leads ECG).
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Figure 4.20: Monte Carlo simulation for estimating the performance of the source extraction algorithms
with different number of leads (case A AF source, SNR = 15, AV R = −10 dB).
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Fourth experiment

In the same conditions of the third experiment, but using the case B of AF model, we compare BSS-
BTD, PCA and RobustICA-f using only two leads. Lead II is depicted in Figure 4.21. We consider
AV R = −10 dB. The AF source was estimated by BSS-BTD with L = (66, 66, 66, 66) (Figure 4.22).
The sources estimated by PCA and RobustICA-f are depicted in Figures 4.23 and 4.24, respectively.
A first Monte Carlo simulation consisting of 20 runs was performed by varying the SNR (Figure 4.25).
A second Monte Carlo simulation was performed by varying the number of leads (Figure 4.26) for
SNR = 15. Like the first simulation, 20 runs was performed.
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Figure 4.21: Generated ECG signal for the case B of AF source with AV R = −10 dB (lead II).
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Figure 4.22: Case B AF source extracted by BSS-BTD using two leads.
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Figure 4.23: Case B AF source extracted by PCA using two leads.
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Figure 4.24: Case B AF source extracted by RobustICA-f using two leads.
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Figure 4.25: Monte Carlo simulation for estimating the performance of the source extraction algorithms
under noise in experiment 4 (case B AF source, two leads ECG).
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Figure 4.26: Monte Carlo simulation for estimating the performance of the source extraction algorithms
with different number of leads (case B AF source, SNR = 15, AV R = −10 dB).
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Discussion

The BSS-BTD method is comparable to the classic source extraction methods based on matrix decom-
positions when using 8 leads, as observed in experiments 1 and 2. By contrast, BSS-BTD can extract the
AF source using only two leads, while RobustiICA-f and PCA fail, since they do not have enough spatial
diversity. Therefore, BSS-BTD presents an advantage over the classical methods using when using only
two leads, as observed in experiments 3 and 4.

Even though BSS-BTD can extract Stridh’s AF sources, do they fit its deterministic model? In order
to use the BSS-BTD, we have to assure that the desired signals can be modeled as (4.15). The model of
Stridh and Sornmo consists of:

yl(n) = −
M∑
i=1

al,i(n) sin (iθ(n)) , (4.45)

where

al,i(n) =
2

πi
(al + ∆al sinωan) (4.46)

and

θ(n) = ω0n+
∆f

ff
sin (ωfn) . (4.47)

Let us extend the model (4.45) in order to allow different fundamental frequencies ω0,l at each lead l:

yl(n) = −
M∑
i=1

al,i(n) sin (iθl(n)) , (4.48)

in which

θl(n) = ω0,ln+
∆f

ff
sin (ωfn) . (4.49)

Note that this modification does not change the structure of the original model. Let us develop the
equation (4.48) by substituting (4.49):

yl(n) = −
M∑
i=1

al,i(n) sin

(
iω0,ln+ i

∆f

ff
sin (ωfn)

)
(4.50)

= −
M∑
i=1

al,i(n)

[
1

2j
e
ji
(
ω0,ln+ ∆f

ff
sin(ωfn)

)
− 1

2j
e
−ji

(
ω0,ln+ ∆f

ff
sin(ωfn)

)]
(4.51)

= −
M∑
i=1

[
al,i(n)

2j

(
ejiω0,l

)n
e
ji∆f

ff
sin(ωfn) − al,i(n)

2j

(
e−jiω0,l

)n
e
−ji∆f

ff
sin(ωfn)

]
. (4.52)

Without loss of generality, the equation (4.52) can be written in a simpler form:

yl(n) =

R∑
r=1

al,r(n)pl,r(n)znl,r, (4.53)

where pl,r(n) is the term responsible for the frequency modulation in (4.52).
We see clearly that (4.53) cannot be modeled as (4.15) due to the time-dependency of the amplitude

al,r(n) and frequency modulation pl,r(n). This observation could help explain why the BSS-BTD does not
show a good performance in certain scenarios. We can observe that BSS-BTD performs better extraction
for the case A of AF by comparing Figures (4.19) and (4.25). If the BTD-BSS model is modified to deal
with these discrepancies of models, its performance might be ameliorated when considering others AF
scenarios, such as the case B of AF.

In this chapter, we have introduced a new tensor decomposition called BTD and a source separation
method called BSS-BTD. We have used this method for extracting atrial activity from ECG signals and
we have compared its performance with benchmark methods such as PCA and RobustICA-f. We have
concluded that BSS-BTD performs better than the benchmark methods when the spatial diversity is
very constrained. In the next chapter, we will introduce another tensor-based method for extracting
characteristics from ECG signals.
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Chapter 5

Multilinear Subspace Learning

As discussed in Chapter 2, the PCA and ICA are capable of extracting features (or components) that
describe the ECG signal and can be used to interpret and analyze the AF signal and infer some aspects
about the heart’s condition. Indeed, PCA and ICA can be seen as part of a family of algorithms called
Linear Subspace Learning (LSL), in which a high-dimensional data set pertaining to a certain space is
projected to a subspace in which the analysis is simplified. Recently, generalizations of LSL methods
such as Multilinear PCA (MPCA) [57] and Multilinear ICA (MICA) [58] have been proposed and applied
to machine learning [5] and biomedical [46] problems. In this section we discuss the MSL methods and
their possible application to AF analysis.

5.1 Multilinear Projections

Data pertaining to a high dimensional space can be transformed to a lower dimensional subspace by
means of projections. When dealing with tensor data, multilinear projections are considered. If we
are interested in extracting some features from a tensor, or reducing its dimensionality, the best set of
projections that will optimize the projected tensor according to a certain criterion need to be found.
Before discussing this problem, let us discuss some class of projections.

A Vector-to-Vector Projection (VVP) takes a vector x ∈ RI and projects to another vector y ∈ RP
using a projection matrix U ∈ RI×P :

y = UTx. (5.1)

Consider the Nth order tensor X ∈ RI1×I2...×IN . Before using a VVP on this tensor, it needs to be
vectorized to a vector x ∈ RI where I =

∏N
n=1 In, and then a (I × P )-dimensional matrix will be

calculated, resulting in IP = P
∏N
n=1 In parameters to be estimated. Consider a Nth order tensor

X ∈ RI1×I2×...×IN . An Elementary Multilinear Projection (EMP) will project X into a scalar y ∈ R
through N projection vectors u(n) ∈ RIn :

y = X ×1 u(1)T ×2 u(2)T . . .×N u(N)T , ||u(n)|| = 1 for n = 1, . . . , N (5.2)

Multiplying a tensor by a vector will result in a tensor of order (N − 1). Thus, multiplying it by N
vectors in all modes will result in a tensor of order 0, i.e., a scalar. Each In-dimensional vector needs
to be estimated for n = 1, . . . , N , then

∑N
n=1 In parameters needs to be calculated in an EMP. The

Tensor-to-Vector Projection (TVP) consists of projecting X to a vector y ∈ RP . The elements of y are
defined as

y(p) = X ×1 u(1)T

p ×2 u(2)T

p . . .×N u(N)T

p , for p = 1, . . . , P, (5.3)

where u
(n)
p ∈ RIn . Note that a TVP consists of P EMP, then there are P

∑N
n=1 In parameters to

be estimated. In a Tensor-to-Tensor Projection (TTP), the tensor X is projected to a tensor Y ∈
RP1×P2×...×PN , where Pn ≤ In ∀n, by means of projection matrices U(1),U(2), . . . ,U(N):

Y = X ×1 U(1)T ×2 U(2)T . . .×N U(N)T , (5.4)

where U(n) ∈ RIn×Pn . This projection can be performed in N steps. Each step consists of multiplying
each In-dimensional mode-n fiber of X by U(n), resulting in Pn-dimensional fibers. In a TTP, each
(In×Pn)-dimensional matrix has to be calculated for n = 1, . . . , N , resulting in

∑N
n=1 Pn×In parameters.
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Input Output VVP TVP TTP∏N
n=1 In P P

∏N
n=1 In P

∑N
n=1 In

∑N
n=1 PnIn

10× 10 4 400 80 40 (Pn = 2)
100× 100 4 40000 800 400 (Pn = 2)
100× 100× 100 8 8000000 2400 600 (Pn = 2)

Table 5.1: Number of parameters of three multilinear projections [5].

Table 5.1 compares the number of parameters of the discussed projections. Note that when the input
tensor has a massive quantity of data, VVP needs to estimate an overwhelming number of parameters,
while TTP needs to estimate a few hundreds. Therefore, modeling massive data as tensors will allow the
utilization of multilinear projections that present the advantage over linear projections relative to the
numbers of parameters to be estimated.

5.2 The Multilinear Subspace Learning Framework

Consider a set ofM Nth-order tensor samples {X1,X2, . . . ,XM} where Xn ∈ RI1×I2×...×IN . The objective
of MSL to find a set of projections {U(n)} such that the projected samples will maximize (or minimize)
an optimatilty criterion, where the dimensionality of the projected tensors are lower than the original
dimensionality. This definition can be mathematically expressed as:

{U(n)} = arg max
{U(n)}

Φ
(
{U(n)}, {Xm}

)
(5.5)

for n = 1, . . . , N and m = 1, . . . ,M .
In order to define a MSL algorithm, we need to choose an optimization criterion Φ (·) and a multilinear

projection. The optimization problem (5.5) does not have a closed-form solution, since tensor-based
projections have N parameters to be solved in each mode, which depend on projections on others modes.
This makes simultaneous estimation very difficult, motivating the use of a suboptimal iterative solutions.
Generally, an ALS-based algorithm is used to solve the problem (5.5). This kind of algorithm, requires
the selection of some initialization values. A bad initialization may lead the algorithm to converge slowly.

Many MSL methods have been proposed in the literature. They are based on different optimiza-
tion criteria, such as Least-Squares error minimization, variation maximization, scatter difference max-
imization and many others [5]. In the next section, we will discuss the MPCA method, a multilinear
generalization of the PCA discussed in Section 2.3.1.

5.3 Multilinear Principal Component Analysis

In machine learning applications, data is usually very high-dimensional. Using classical techniques such
as PCA to perform dimensionality reduction and feature extraction may be overwhelming when dealing
with massive data, as explained in Section 5.1. Lately there have been several attempts to develop
multilinear methods of subspace learning.

Lu et al [57] proposed a multilinear algorithm called Multilinear Principal Component Analysis
(MPCA) that performs dimensionality reduction in all tensor modes by projecting tensors so that most
of the variation in the original tensors is captured.

First of all, let us define a measure of variability and then pose the MPCA problem. Let {X (1),X (2), . . . ,X (M)}
be a set of M tensor samples in RI1×I2...×NIN . The total scatter of these tensors is defined as

ΨX =

M∑
m=1

||X (m) − X̄ ||2F , (5.6)

where X̄ is the mean tensor calculated as

X̄ =
1

M

M∑
m=1

X (m).
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The mode-n total scatter matrix of these samples is defined as

S
(n)
X =

M∑
m=1

(
X

(m)
(n) − X̄(n)

)(
X

(m)
(n) − X̄(n)

)T
, (5.7)

where X
(m)
(n) is the mode-n unfolded matrix of X (m).

Now consider that a set of M tensor samples {X1,X2, . . . ,XM} is available. Each input tensor Xm
belongs to a tensor space RI1 ⊗RI2 . . .⊗RIN where In is the mode-n dimension of the tensor. The goal
of MPCA is to define a set of multilinear transformations {U(n) ∈ RIn×Pn , n = 1, . . . , N} that maps the
original tensor space into the subspace RP1 ⊗ RP2 . . .⊗ RPN , Pn < In, ∀n, via a TTP:

Ym = Xm ×1 U(1)T ×2 U(2)T . . .×N U(N)T , (5.8)

such that Ym, for m = 1, . . . ,M , captures the most of the variations observed in the original tensor
objects. Given the desired projected dimensions Pn for n = 1, . . . , N , these N projection matrices are
obtained by maximizing the total scatter of the projected tensors:{

Û(1), Û(2), . . . , Û(N)
}

= arg min
U(1),U(2),...,U(N)

ΨY . (5.9)

Let Û(n), n = 1, . . . , N be the solution of (5.9). It consists of the Pn eigenvectors corresponding to
the Pn eigenvalues of the matrix

Φ(n) =

M∑
m=1

(
X

(m)
(n) − X̄

(m)
(n)

)
UΦ(n)UT

Φ(n)

(
X

(m)
(n) − X̄

(m)
(n)

)T
, (5.10)

where
UΦ(n) =

(
U(N) ⊗ . . .⊗U(n+1) ⊗U(n−1) ⊗ . . .⊗U(1)

)
(5.11)

in which U(n) is the projection matrix for the mode n. The proof of this result can be found in [57].
Note that P1, P2, . . . , PN are supposed to be known.

A special case of MPCA is called “Full Projection”. It consists of a MPCA with In = Pn for
n = 1, . . . , N . In this case, Φ(n) reduces to

Φ(n)∗ =

M∑
m=1

(
X

(m)
(n) − X̄

(m)
(n)

)(
X

(m)
(n) − X̄

(m)
(n)

)T
. (5.12)

The optimal U(n) = U(n)∗ is obtained as the matrix comprised of the eigenvectors of Φ(n)∗ .
In [57], Lu et al proposed two techniques for automatic dimensionality selection based on including

constraints to the objective function in (5.9) to take into account the best dimensionality:{
Û(n), P̂n

}N
n=1

= arg min
{U(n)}Nn=1,{Pn}Nn=1

ΨY . (5.13)

subject to ∏N
n=1 Pn∏N
n=1 In

< Ω, (5.14)

where Ω is set by the user. The first technique, called Sequential Mode Truncation (SMT), consists
of truncating, in a selected mode n, the Pnth n-mode eigenvector of the reconstructed input tensors
Xm = Ym×1 U(1)×2 U(2) . . .×N U(N) until the constraint (5.14) is satisfied. However truncation in one
mode affects the eigenvalues in other modes. Another technique, called Q-based method, overcomes this
difficulty. For more details, refer to [57].

Since UΦ(n) depends on U(k), k = 1, . . . , n − 1, n + 1, . . . , N , its optimization depends on the pro-
jections in other modes and there is no closed-form solution to this problem. Nevertheless, an iterative
approach can be used. The projection matrices are calculated one by one with all the others fixed (lo-
cal optimization). This optimization is repeated similarly to the ALS method until convergence or the
maximum number of iterations is achieved.

An initialization is required for this iterative algorithm. The Full Projection Truncation (FPT) is
often used as initialization for the MPCA algorithm. It consists of setting U(n) as the Pn most significant
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eigenvectors of the full projection matrix (5.12) for n = 1, . . . , N . Simulation studies in [57] indicate
that a good initialization increases the speed of convergence and, compared to many other initializations,
FPT has the faster convergence speed.

The MPCA algorithm will be detailed in the following. Consider the input tensor samples {Xm ∈
RI1×I2...×IN , m = 1, . . . ,M} and their low-dimensional representation {Ym ∈ RP1×P2...×PN , m = 1, . . . ,M}.
First of all, Center the input tensors: {X̃m = Xm−X̄m}, and then initialize UΦ(n) . Subsequently, perform
the following local optimization:

• Calculate Ỹm = X̃m ×1 U(1)T . . .×N U(N)T for m = 1, . . . ,M .

• Calculate ΨY0
=
∑M
m=1 ||Ỹ||2F .

• For k = 1, . . . ,K

– For n = 1, . . . , N

∗ Set U(n) as the Pn most significant eigenvectors of Ψ(n).

– Calculate Ỹm and ΨYk
for m = 1, . . . ,M .

– If |ΨYk
−ΨYk−1

| < η, break the loop.

Finally, project the input tensors into the subspace: Ym = X ×1 U(1)T . . .×N U(N)T for m = 1, . . . ,M .
It should be noted that while PCA produces uncorrelated principal components, MPCA does not

produce uncorrelated tensors. Instead, refer to Uncorrelated MPCA [59]. Moreover, MPCA was not
designed to minimize the reconstruction error, but rather maximizing the total variation between the
tensor samples. Unlike PCA, whose principal components are ordered according to their respective
eigenvalue, MPCA does not produce ordered projected tensors, since the feature tensor Ym is obtained
directly from the sample tensor Xm by projection.

MSL methods are interesting since they present some advantages over LSL methods, like reduced
quantity of parameters to be estimated. Thus, these methods are well adapted to massive data tensors.
The definitions of MPCA were introduced and we have seen that it can be used to extract features from a
set of input tensors. It can be used to extract components that strongly contribute to the total variation
of the input tensors. In the ECG context, these components correspond to ventricular activity. This
correspondence motivates further investigation of applying MPCA to ECG signals.
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Chapter 6

Conclusion and further work

This research projected was composed of two parts. The first part was devoted to a bibliographic research
aiming at:

• Studying the biophysical mechanisms of the heart.

• Studying the state of the art of AF extraction methods.

• Studying existing tensorial methods proposed tensors techniques for ECG signal processing.

The second part was focused on the implementation and validation of the studied methods:

• Applying the BSS-BTD method for AF extraction.

• Validating the obtained results by comparing them with the results of existent methods.

The tensorial modeling of ECG signals showed to be a very promising research field, because of the
advantages that high-order tensor methods present over matrix methods, and due to the many problems
that can be more efficiently solved by this modeling.

In particular, the BSS-BTD method is able to better recover AF sources using fewer sensors than
matrix methods, offering superior performance in scenarios with limited spatial diversity. This improved
performance comes from the fact that tensors are uniquely decomposed in mild conditions, allowing the
separation of underdetermined mixtures. It is important to stress that even though we used a synthetic
AF model to assess the performance of this method, this model is a established method in the literature
[4, 6] for analyzing the performance of AF extraction algorithms.

Since good results were obtained for synthetic signals, applying the BSS-BTD method to real AF
signals is motivated. Adapting the BSS-BTD model to Stridh’s AF model, extracting features from ECG
tensors by means of MPCA, and using tensor decompositions for noise removal and AF extraction are
some perspectives for the continuation of the work presented in this report.
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Appendix A

Solving permutation and scaling
indeterminacies

Consider the instantaneous linear mixture model (2.31). Let the M̂ be the estimate of M. In a perfect

separation, we ideally have M̂ = MDP in which D ∈ RR×R is a nonsingular scaling diagonal matrix
and P ∈ RR×R a permutation matrix.

To solve these indeterminacies, it is assumed that M is known. The matrix C = |M̂TM| is calculated.

The element (k, r) of this matrix consists of the correlation between the kth column of M̂ and the rth

column of M. The column r of M that corresponds to the column k of M̂ is equivalent to the column with
the largest element of the kth row of C. The permutation of columns can be carried out by multiplying
M̂ with a matrix P′ that reflects the column correspondences found in C. Finally the permutation
indeterminacy can be undone by calculating M̂p = M̂P′.

Let m̂r and mr be the rth column of M̂p and M, respectively. The scaling indeterminacy between
m̂r and mr can be solved by solving the problem

min
αr

||mr − αrm̂r||2. (A.1)

The optimum αr can be found by setting the gradient of J(αr) = ||mr − αrm̂r||2 to zero:

∂J(αr)

∂αr
=

∂

∂αr
||mr − αrm̂r||2 (A.2)

=
∂

∂αr

{
(mr − αrm̂r)

T (mr − αrm̂r)
}

=
∂

∂αr

{
mT
r mr − 2αrm

T
r m̂r + α2

rm̂
T
r m̂r

}
= −2mT

r m̂r + 2αrm̂
T
r m̂r = 0.

Then

α∗r =
mT
r m̂r

m̂T
r m̂r

. (A.3)

The scaling indeterminacy can be resolved by calculating αr for the r = 1, . . . , R columns of M̂p,

storing them in a diagonal matrix D′ and calculating M̂pD
′. Finally, the indeterminacies are undone by

M = M̂P′D′.
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