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Abstract

Large-scale antenna systems offer many attractive features, including large ar-
ray gain and improved spatial resolution, for example. However, classical beam-
forming methods, such as the linearly constrained minimum variance (LCMV)
filter, do not perform well on this scenario due to large computational costs
involved. To deal with this issue, we propose Kronecker-separable extensions of
the LCMV filter and its stochastic gradient implementation, known as Frost’s
algorithm, for uniform rectangular arrays. We study the convergence of the
proposed methods, investigate their computational complexity, and assess their
source recovery performance with computer simulations. Our results show that
our methods exhibit important computational savings while the source recovery
performance losses are small.

Keywords: Beamforming, LCMV, stochastic gradient, Kronecker product,
Khatri-Rao product.

1. Introduction

Large-scale (massive) antenna arrays will be employed in new generation
wireless communication systems to increase performance by large array gain and
accurate spatial filtering [1, 2]. To this end, the array antennas are weighted by
complex coefficients which coherently combines (and possibly attenuates) the
received (transmitted) signals from (towards) some directions. This beamform-
ing technique is well-understood for cases where the array has a relatively small
number of antennas. However, when the array size grows, classical beamforming
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techniques, such as those discussed in [3, 4], become computationally expensive,
calling for the development of more efficient solutions.

The first attempts to reduce the computational complexity of filtering meth-
ods can be traced back to some decades ago. One can cite the work of Treitel [5]
which presented a low-dimensional multi-stage representation for bi-dimensional
filters based on the eigendecomposition of the coefficient matrix, providing com-
putational savings. However, the computation of large coefficient matrix is still
expensive in general. In the context of massive multiple-input multiple-output
systems [1], zero-forcing (ZF)/minimum mean square error (MMSE) detection
schemes typically involve matrix inversions, which are particularly expensive
at massive systems. To avoid that, some works proposed approximating the
matrix inverse by the Neumann series expansion [6, 7]. Unfortunately, this ap-
proximation may not always converge and its overall computational complexity
might still be comparable to matrix inversion, owing to a large number of ma-
trix multiplications. As an alternative, other researchers suggested calculating
these linear detectors by iterative algorithms, such as the Jacobi method [8, 9].
However, such methods may still suffer from slow convergence rate and high
overall computational complexity. Another strategy to reduce the number of
calculations of filtering methods consists of exploiting any special structure the
filter may present. For instance, the array factor of multi-dimensional arrays
can be factorized (separated) into components corresponding to each array di-
mension [10, 11]. From this property, the steering vector of multi-dimensional
arrays assumes a Kronecker factorization which can be exploited to enhance the
performance of array processing techniques.

Kronecker separable systems have been investigated in the context of system
identification [12, 13, 14], beamforming [15, 16], and echo cancellation [17, 18].
In [12], the authors introduced a tensor least mean squares (TLMS) algorithm
to identify a bilinear separable system. They observed that this representation
reduces the number of parameters to be identified, increasing the convergence
rate of the stochastic gradient. In [14], we extended the model of [12] to a trilin-
ear separable system and proposed the trilinear Wiener-Hopf (TWH) algorithm
to the system impulse response. The results have shown that the presented
method exhibits better accuracy compared to the TLMS algorithm and the clas-
sical Wiener-Hopf filter. In [15, 16], we introduced the tensor minimum mean
square error (TMMSE) beamformer, which applies the methodology of [14] in
the MMSE beamforming problem. Furthermore, we proposed the Kronecker
MMSE (KMMSE) beamformer, which exploits the Khatri-Rao structure of the
uniform rectangular array (URA) manifold matrix. We have shown through
computer simulations that the TMMSE and KMMSE filters offer significant
computational savings with a controlled source recovery performance loss. We
can also mention the work of [17], which adapts the TWH to identify a low-
rank system, i.e., a linear and time-invariant system whose impulse response
can be approximated as a sum of Kronecker-separable terms. Presented numer-
ical results confirm that imposing the Kronecker structure on low-rank systems
allows for computational complexity reduction and parameter estimation accu-
racy enhancement. In [18], fast recursive least squares methods for identifying
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second-order Kronecker separable (bilinear) systems are presented. Analytical
and simulation results confirm the low computational costs and the identifica-
tion performance of the proposed bilinear methods.

Our contributions [15, 16] have considered only the MMSE criterion, which
requires pilot sequences to design the parameters of the beamforming filter.
However, in some applications, this supervised design approach is unavailable.
As alternatives to the MMSE filter, one can use other strategies such as the
minimum variance distortionless response filter (MVDR) and the global sidelobe
canceller (GSC) [10]. Separable extensions of these methods have already been
presented. In [19], the authors investigated the performance of a Tensor GSC
and observed that it requires fewer snapshots to achieve a certain performance
level, compared to the classical GSC filter. A tensor MVDR algorithm has been
introduced in [20] for polarization sensitive arrays.

In the present work, we introduce separable extensions of the linear con-
strained minimum variance (LCMV) beamformer and its stochastic gradient
implementation known as the Frost’s algorithm [21] for a URA. The proposed
methods can be applied to any separable array structure, including uniform
linear arrays [15, 22] and other multi-scale planar array structures [23]. The
main contributions of this paper are: (i) we present two strategies for designing
separable LCMV- and Frost-type beamformers, (ii) we conduct a computational
analysis of the proposed algorithms, (iii) we prove their convergence, and (iv) we
assess their performance through computer simulations. Our simulation results
show that the proposed separable methods are more computationally efficient
than their classical counterparts without presenting significant signal recovery
loss. More specifically, the proposed separable LCMV-type beamformers ex-
hibit an important reduction in the number of multiplications relative to the
classical LCMV filter. The signal recovery performance of our methods may be
approximately equivalent or much better, depending on the scenario and imple-
mentation type, as it will be discussed. Furthermore, the separable Frost-type
beamformers require less computational resources than their classical counter-
part and they yield better signal recovery performance, especially in the low
signal-to-noise ratio (SNR) regime.

This work is organized as follows: the system model is introduced in Section 2
and the proposed beamforming methods are presented in Section 3. Therein,
we also discuss their computational complexity. Simulation results are shown
and discussed in Section 4, and the work is concluded in Section 5.

1.1. Notation
x denotes vectors, and X matrices. The (i, j)-th entry of X is written

as [X]i,j . The transpose, and the conjugate transpose (Hermitian) of X are
denoted by XT, XH, respectively. The (M ×M)-dimensional identity matrix
is represented by IM and the (M ×N)-dimensional null matrix by 0M×N . The
`2 norm, the statistical expected value operator, the vectorization operator,
and the matrix trace are respectively denoted as ‖·‖2, E [·], vec(·), Tr(·). The
Kronecker product, the Khatri-Rao product, the elementwise product, and the
Big-O notation are referred to as ⊗, �, �, and O(·), respectively.
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2. System Model

Let us consider a multi-antenna system equipped with a URA of N = NhNv
omni-directional antennas, with Nh columns and Nv rows along the yz plane, as
depicted in Figure 1. The antenna array is designed to operate at wavelength λ
and the inter-element spacing in both horizontal and vertical directions is λ/2.

We assume that R narrow-band wavefronts with the same wavelength λ in
the far-field propagation impinges onto the URA from directions (φr, θr), r =
1, . . . , R. These wavefronts carry mutually independent digitally-modulated sig-
nals with zero mean and variance σ2

s,r, r = 1, . . . , R. The discrete-time model
for the received signal at the n-th antenna at instant k is then given by:

xn[k] =

R∑
r=1

an(φr, θr)sr[k] + bn[k],

where an(φr, θr) denotes the array response to the r-th wavefront at the n-
th antenna, sr[k] the complex-envelope of the digitally-modulated symbol, and
bn[k] the complex additive white Gaussian sensor noise (AWGN) with zero mean
and variance σ2

b . Since the rectangular array is uniformly spaced with half-
wavelength spacing, the array response can be written as [10]

an(φr, θr) = ejπ[(nh−1) sinφr sin θr+(nv−1) cos θr]. (1)

with n = nh + (nv − 1)Nh, nh ∈ {1, . . . , Nh}, nv ∈ {1, . . . , Nv}. For notation
simplicity, we parameterize the array response by the horizontal and vertical
direction cosines pr = sinφr sin θr and qr = cos θr, respectively. Let us define
the array steering vector a(pr, qr) = [a1(pr, qr), . . . , aN (pr, qr)]

T and symbols
vector s[k] = [s1[k], . . . , sR[k]]

T. Using matrix notation, the received signals
can be expressed as

x[k] = [x1[k], . . . , xN [k]]
T
= As[k] + b[k], (2)

where A = [a(p1, q1), . . . ,a(pR, qR)] ∈ CN×R denotes the array manifold ma-
trix, and b[k] = [b1[k], . . . , bN [k]]T the AWGN vector. Note that the model (2) is
valid only for a specific angular range where the antenna response is considered
to be omni-directional.

The array response (1) can be separated into horizontal and vertical contri-
butions due to the URA bi-dimensionality [10]. More specifically, (1) can be
factorized as

an(pr, qr) = anh
(pr)anv

(qr), (3)

where anh
(pr) = ejπ(nh−1)pr and anv (qr) = ejπ(nv−1)qr . The sub-array steering

vectors are then defined as

ah(pr) = [a1(pr), . . . , aNh
(pr)]

T ∈ CNh ,

av(qr) = [a1(qr), . . . , aNv
(qr)]

T ∈ CNv .
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unit ball

wavefront

Figure 1: Uniform rectangular array in the yz plane.

The horizontal and vertical sub-arrays of a URA are depicted in Figure 1. The
separable representation in (3) leads to the Kronecker factorization of the array
steering vectors:

a(pr, qr) = av(qr)⊗ ah(pr) ∈ CN , (4)

and, consequently, the array manifold matrix can be rewritten as

A = [av(q1)⊗ ah(p1), . . . ,av(qR)⊗ ah(pR)] = Av �Ah,

where

Ah = [ah(p1), . . . ,ah(pR)] ∈ CNh×R,

Av = [av(q1), . . . ,av(qR)] ∈ CNv×R

stand for the vertical and horizontal sub-array manifold matrices, respectively.
Other useful representations of the array manifold are obtained by reshaping
the (N ×R)-dimensional matrix A into

AURA,h =
[
aT
v (q1)⊗ ah(p1), . . . ,aT

v (qR)⊗ ah(pR)
]
∈ CNh×NvR (5)

and

AURA,v =
[
av(q1)⊗ aT

h(p1), . . . ,av(qR)⊗ aT
h(pR)

]
∈ CNv×NhR. (6)

We have shown in [16] that, using (5) and (6), the received signals vector x[k]
can be reshaped into

X[k] = AURA,h(s[k]⊗ INv
) +B[k] ∈ CNh×Nv (7)
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and
XT[k] = AURA,v(s[k]⊗ INh

) +BT[k] ∈ CNv×Nh , (8)

where B[k] ∈ CNh×Nv is the matrix obtained by reshaping the AWGN vec-
tor b[k]. Equations (4)–(8) emphasize the separable property of the URA in our
system model. These models will be leveraged to design low-cost beamformers
in Section 3.

Following our assumption, the spatial correlation matrices of the AWGN
term, symbols, and received signals vectors are respectively given by

Rbb = E
[
b[k]b[k]H

]
= σ2

bIN ,

Rss = E
[
s[k]s[k]H

]
= Diag

(
σ2
s,1, σ

2
s,2, . . . , σ

2
s,R

)
,

Rxx = E
[
x[k]x[k]H

]
= ARssA

H +Rbb. (9)

In practice, the correlation matrix of the observed signals is probably unknown
and need thus to be estimated. In this case, we consider the following sample
estimate over K snapshots:

R̂xx =
1

K

K−1∑
k=0

x[k]xH[k] (10)

Hereafter, we assume without loss of generality that the first wavefront (r = 1) is
the signal of interest while the other R− 1 signals are regarded as interference.
The desired symbols are now referred to as sd[k] with variance σ2

d. We can
further express the received signals correlation matrix as

Rxx = σ2
da(pd, qd)a(pd, qd)

H +

R∑
r>1

σ2
s,ra(pr, qr)a(pr, qr)

H +Rbb

= Rdd +Rii +Rbb,

where Rdd and Rii represent the correlation matrix of the desired and in-
terference signals signature, respectively. Now, we define the signal-to-noise
ratio SNR = Tr(Rdd)/Tr(Rbb) = σ2

d/σ
2
b and the signal-to-interference ratio

SIR = Tr(Rdd)/Tr(Rii) = σ2
d/
∑R
r=2 σ

2
s,r.

3. Beamforming Methods

We are interested in designing beamforming filters which recover the signal
of interest from the observed signals by attenuating the interfering ones. If
the direction cosines of each wavefront are a priori known from using parame-
ter estimation methods such as MUSIC [3], for example, then one can employ
the classical LCMV filter (recalled in Section 3.1.1). As the matrix inversions
in the LCMV filter may bring computational issues, one can use its adaptive
implementation, known as Frost’s algorithm (outlined in Section 3.2.1).

6



In some scenarios, e.g., high-resolution beamforming with large-scale arrays,
these classical solutions may become difficult to employ due to the large com-
putational expenses of the filter optimization. To tackle this issue, we resort to
parameter reduction by employing separable filters w = wh ⊗ wv ∈ CN , with
wh ∈ CNh and wv ∈ CNv . Instead of optimizing the full vector w, as it is typi-
cally done, we optimize its lower-dimensional Kronecker factors. We show that
this approach yields significant computational savings while exhibiting small
source recovery degradation.

In the following, we discuss LCMV-based and Frost-based beamformers. The
classical LCMV filter is recalled in Section 3.1.1 and we propose two novel sep-
arable extensions of this algorithm in Sections 3.1.2 and 3.1.3. The classical
Frost’s algorithm is then outlined in Section 3.2.1 and separable implementa-
tions are introduced in Section 3.2.2. Furthermore, we assess the computational
complexity of each method by studying the number of complex multiplications
necessary to obtain the beamforming filters.

3.1. LCMV-Type Beamformers
We consider a norm constraint regularization term (diagonal loading [24])

in all LCMV-based beamformers presented in this section to avoid numerical
instability and to increase robustness against short sample support. Such nu-
merical instability may arise whenever any two incoming signals arrive from
similar directions, making Av and Ah (and consequently A) rank-deficient [16].
This norm constraint also ameliorates the filter robustness to slight errors in
array characteristics [25].

3.1.1. Linearly Constrained Minimum Variance (LCMV)
The LCMV filter seeks to minimize the output signal y[k] = wHx[k] consid-

ering linear constraints designed to recover the signal of interest and to filter
out the undesired signals. We formulate a set of linear constraints based on the
array factor: wHa(pr, qr) = fr, r = 1, . . . , R. We assume perfect knowledge of
all direction cosines, thus the linear constraints can be succinctly represented
as CHw = f , where C = A denotes the array manifold constraint matrix and
f = [f∗1 , f

∗
2 , . . . , f

∗
R]

T the array factor constraint vector. A typical choice for the
array factor constraint vector which effectively attenuates the interfering signals
is f = [1, 0, . . . , 0]T, where the desired signal is indexed by r = d = 1.

The regularized LCMV beamformer is obtained by solving the following
problem:

minimize
w

wHRxxw + δ ‖w‖22

subject to CHw = f ,
(11)

where δ > 0 is the regularization parameter. In Section 4, we discuss a practical
procedure for choosing δ. By using Lagrange multipliers, we incorporate the
linear constraint into the objective function:

J(w,λ) = wHRxxw + λH(CHw − f) + λT(CTw∗ − f∗) + δ ‖w‖22 . (12)
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Table 1: Computational complexity of the LCMV beamformer.
Rxx calculation Number of multiplications

Equation (9) 3NR2 + 3N2R+R2 +O(N3) +O(R3)
Equation (10) 2NR2 + 2N2R+R2 +O(N3) +O(R3) +N2K

The gradient of (12) with respect to w∗ is given by

∇w∗J(w,λ) = Rxxw +Cλ+ δw. (13)

Setting (13) to 0N×1 and solving for w gives wLCMV = −(Rxx + δIN )−1Cλ.
By plugging it into the linear constraint CHw = f , we get λ = −[CH(Rxx +
δIN )−1C]−1f , and finally:

wLCMV = (Rxx + δIN )−1C
[
CH(Rxx + δIN )−1C

]−1
f . (14)

Note that the matrixC needs to be full-column rankR so
[
CH(Rxx + δIN )−1C

]−1
exists. The correlation matrix Rxx can be calculated either by (9) if the statis-
tics are known or by (10) otherwise.

The number of multiplications carried out in the LCMV filter design is sum-
marized in Table 1. To conduct a fair comparison among the LCMV-type beam-
formers, we include the calculation Rxx in the total number of multiplications.
The computation of (9) yields NR2 +N2R multiplications, whereas (10) yields
N2K. Then, the inversion of (Rxx + δIN )−1 and

[
CH(Rxx + δIN )−1C

]−1
requires O(N3) and O(R3) multiplications, respectively. Finally, the calcula-
tion of CH(Rxx + δIN )−1C and R−1xxC

(
CH(Rxx + δIN )−1C

)−1
f demands

(NR2 +N2R) and (R2 +N2R+NR2) multiplications, respectively.

3.1.2. Tensor Linearly Constrained Minimum Variance (TLCMV)
We now exploit the bi-dimensional signal model (7) to design a separable

beamformer w = wv⊗wh with the LCMV criterion. Consider the filter output
signal

y[k] = wHx[k] = (wH
v ⊗wH

h ) vec (X[k])

= wH
hX[k]w∗v (15)

= wH
vX

T[k]w∗h. (16)

The following algebra property was applied to get (15) and (16). LetX = ABC
with matching dimensions, thus vec(X) = (CT⊗A) vec(B) [26]. It then follows
thatA = wH

h , B =X[k], and C = w∗v in (15). Equation (16) is simply obtained
by transposing (15). These expressions allow us to define the horizontal and
vertical sub-array inputs uh[k] = X[k]w∗v and uv[k] = XT[k]w∗h, respectively
and represent the beamformer output in terms of the horizontal and vertical
sub-beamformers:

y[k] = wH
huh[k] = w

H
vuv[k]. (17)
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If the signal statistics are perfectly known, the correlation matrices of uh[k] and
uv[k] are respectively given by [16]

Ruhuh
= E

[
uh[k]u

H
h [k]

]
=

AURA,h(Rss ⊗w∗vwT
v )A

H
URA,h + σ2

b‖wv‖22INh
, (18)

Ruvuv
= E

[
uv[k]u

H
v [k]

]
=

AURA,v(Rss ⊗w∗hwT
h )A

H
URA,v + σ2

b‖wh‖22INv
. (19)

Otherwise, they can be estimated as

R̂uhuh
=

1

K

K−1∑
k=0

uh[k]u
H
h [k] =

1

K

K−1∑
k=0

X[k]w∗vw
T
vX[k]H, (20)

R̂uvuv =
1

K

K−1∑
k=0

uv[k]u
H
v [k] =

1

K

K−1∑
k=0

XT[k]w∗hw
T
hX

∗[k]. (21)

We now show that the linear constraints CHw = f can also be separated.
To this end, consider the following property of the Khatri-Rao product [26]:

(P �Q)T(r ⊗ s) = (P Tr)� (QTs), (22)

where P , Q, r, and s are arbitrary matrices and vectors with matching dimen-
sions. Replacing P by C = A = Av �Ah and Q by w = wv ⊗wh in (22) and
applying this property to CHw = f , we get:

(Av �Ah)
H(wv ⊗wh) = (AH

vwv)� (AH
hwh). (23)

Now, consider the separable model (23) and assume f = fv � fh, with fv =
fh = [1, 0, . . . , 0]T ∈ CR. Then the linear constraint CHw = f can be separated
as 

(
av(q1)

Hwv
) (
ah(p1)

Hwh
)

...(
av(qR)

Hwv
) (
ah(pR)

Hwh
)
 =

 [f ]∗1
...

[f ]∗R

 =

 [fv]
∗
1[fh]

∗
1

...
[fv]

∗
R[fh]

∗
R

 . (24)

Equation (24) reveals that the scalar elements of CHw can be factorized into
horizontal and vertical components ah(pr)Hwh and av(qr)Hwv, respectively,
which leads to CHw = (AH

vwv)� (AH
hwh) = fv � fh.

To design the sub-filters wh and wv, we formulate the following regularized
LCMV problem:

minimize
wh,wv

E
[
|y[k]|2

]
+ δh ‖wh‖22 + δv ‖wv‖22

subject to CH
hwh = fh,

CH
vwv = fv,

(25)
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where δh, δv > 0 are the regularization parameters. We reformulate (25) as an
unconstrained optimization problem with the Lagrange multipliers method. Let

J(wh,λh,wv,λv) = E
[
|y[k]|2

]
+λH

h(C
H
hwh − fh) + λT

h(C
T
hw
∗
h − f∗h)

+λH
v (C

H
vwv − fv) + λT

v (C
T
vw
∗
v − f∗v )

+δh ‖wh‖22 + δv ‖wv‖22 (26)

denote the unconstrained objective function, where λh ∈ CNh and λv ∈ CNv

stand for the horizontal and vertical sub-filters’ multipliers. Thus (25) is rewrit-
ten as

minimize
wh,λh,wv,λv

J(wh,λh,wv,λv). (27)

From (17), it follows that the output signal power in (26) can be expressed as

E
[
|y[k]|2

]
= wH

hRuhuh
wh = wH

vRuvuvwv.

We employ the block coordinate descent method [27] (also known as nonlin-
ear Gauss-Seidel method) to solve (27). It consists of sequentially solving the
parameter blocks (wh,λh) and (wv,λv) until a convergence criterion triggers.
This “divide to conquer” approach breaks (27) down into the two coupled sub-
problems:

minimize
wh,λh

Jwv,λv (wh,λh) (28)

and
minimize
wv,λv

Jwv,λv (wh,λh) (29)

where the sub-indexes of J now indicate which parameters are fixed when opti-
mizing for the objective function’s arguments. Hereafter, this method is referred
to as Tensor LCMV (TLCMV) since it is based on unfolding matrices AURA,h
and AURA,v of the array manifold tensor [16]. It is interesting to note that the
“full” TLCMV problem (25) is non-convex (because of the Kronecker product
between the vector parameters), while in sub-problems (28) and (29) the non-
convexity is annulled since the correlation matrices Ruhuh

and Ruvuv
absorb

the Kronecker product.
The solution of the horizontal sub-filter problem (28) is given by

wTLCMV,h = (Ruhuh
+ δhINh

)−1Ch

[
CH
h (Ruhuh

+ δhINh
)
−1
Ch

]−1
fh.(30)

Likewise, the vertical TLCMV sub-filter is obtained by

wTLCMV,v = (Ruvuv + δvINh
)−1Cv

[
CH
v (Ruvuv + δvINv )

−1
Cv

]−1
fv. (31)

The TLCMV beamformer consists of, first, initializing wv and wh such that
they satisfy their corresponding constraints, and then computing (30) and (31)
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sequentially until
∥∥w(i) −w(i−1)

∥∥
2 < ε, where the super-index i represents the

iteration number, and w = wTLCMV,v ⊗wTLCMV,h. This procedure is summa-
rized in Algorithm 1. The multiplications count for each line of this algorithm
is detailed in Table 2.

To show that the TLCMV beamformer converges, we resort to the same
reasoning as [17, 28]. The block coordinate descent method is known to con-
verge when the solutions of (28) and (29) are uniquely attained [27, Propo-
sition 2.7.1]. Since these sub-problems are themselves convex, this conver-
gence criterion is satisfied. To illustrate this property, consider the initialization
w

(0)
v = [1, . . . , 0]T. At the n-th coordinate block descent iteration, we have

(w
(n)
h ,λ

(n)
h ) = argmin J

w
(n−1)
v ,λ

(n−1)
v

(w(n)
v ,λ(n)

v ) = argmin J
w

(n)
h ,λ

(n)
h

.

as the local optimum solutions. Based on the convexity of (28) and (29), it
follows that

J(w
(n−1)
h ,λ

(n−1)
h ,w(n−1)

v ,λ(n−1)
v ) ≥

J(w
(n)
h ,λ

(n)
h ,w(n−1)

v ,λ(n−1)
v ) ≥ J(w(n)

h ,λ
(n)
h ,w(n)

v ,λ(n)
v ),

hence the local minimum solution is lower-bounded. Moreover, the TLCMV
solution pair (wh,wv), after convergence, is unique, unlike the methods of [16,
17, 28], which exhibit scale ambiguity. TLCMV does not face this issue owing
to the array factor constraints CHw = f , which removes any scale ambiguity
in wh and wv.

Algorithm 1 Tensor LCMV beamformer
Require: ε, δh, δv, fh, fv
1: wv ← [1, 0, . . . , 0]T and wh ← [1, 0, . . . , 0]T

2: i← 0
3: w(i) ← wv ⊗wh
4: repeat
5: Compute Ruhuh

by (18) or (20)
6: Update wh by (30)
7: Compute Ruvuv

by (19) or (21)
8: Update wv by (31)
9: i← i+ 1

10: w(i) ← wv ⊗wh
11: until

∥∥w(i) −w(i−1)
∥∥2

2 < ε

12: return w(i)

3.1.3. Kronecker Linearly Constrained Minimum Variance (KLCMV)
We regard the rectangular array as a set of linear sub-arrays in order to

better understand the sensitivity in both angular domains and to present our
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Table 2: Computational complexity of the TLCMV beamformer (Algorithm 1).
Line Number of multiplications (per iteration)

5 If (18): (N2
v +R2N2

v ) + (NhR
2N2

v +N2
hRNV ) + (Nv +Nh + 1)

If (20): K(2NhNv +N2
h)

6 2N2
hR+ 2NhR

2 +R2 +O(N3
h) +O(R3)

7 If (19): (N2
h +R2N2

h) + (NvR
2N2

h +N2
vRNh) + (Nv +Nh + 1)

If (21): K(2NhNv +N2
v )

8 2N2
vR+ 2NvR

2 +R2 +O(N3
v ) +O(R3)

10 N
11 N

separable LCMV beamformer. Any rectangular array is oriented relative to two
axes, say, y and z. The linear sub-arrays oriented relative to y discriminate
sources in the rectangular array’s azimuth direction. Simultaneously, the linear
sub-arrays relative to z are responsible for the rectangular array’s sensitivity in
the polar domain. This sub-array interpretation is strongly connected to the
array separability property presented in Section 2. In fact, the matrix factors
Av and Ah of the URA manifold matrix A = Av �Ah are uniform linear array
manifold matrices of sub-arrays along the vertical and horizontal directions,
respectively.

This sub-array interpretation motivates us to design independent beamform-
ers for Av and Ah and combine them afterward to get the full rectangular ar-
ray beamformer. The horizontal sub-array is responsible to filter the azimuth
domain whereas the vertical sub-array the polar domain. As we have shown
in [16], combining the sub-filters by the Kronecker product preserves the sub-
filter properties at each domain, effectively recovering the signal of interest and
attenuating the undesired signals. In this direction, instead of spatially sam-
pling the signals using all N antennas, we consider only a horizontal sub-array
with Nh antennas and a vertical sub-array with Nv antennas whose observed
signals are respectively represented by

xh[k] = Ahs[k] + bh[k], (32)
xv[k] = Avs[k] + bv[k], (33)

where bh[k] ∈ CNh and bv[k] ∈ CNv represent the additive Gaussian noise vector
observed at the horizontal and vertical sub-arrays, respectively. These vectors
are defined as

[bh[k]]nh
= bnh+(nv−1)Nh

[k]
∣∣
nv=1

,

[bv[k]]nv = bnh+(nv−1)Nh
[k]
∣∣
nh=1

.

The correlation matrices of (32) and (33) are given by

Rxhxh
= AhRssA

H
h + σ2

bINh
, (34)

Rxvxv = AvRssA
H
v + σ2

bINv
, (35)

12



respectively, and their sample estimators are

R̂xhxh
=

1

K

K−1∑
k=0

xh[k]x
H
h [k], (36)

R̂xvxv
=

1

K

K−1∑
k=0

xv[k]x
H
v [k]. (37)

From (32) and (33), we formulate the following regularized LCMV prob-
lems

minimize
wh

wH
hRxhxh

wh + δh ‖wh‖22

subject to CH
hwh = fh

(38)

and
minimize
wv

wH
vRxvxvwv + δv ‖wv‖22

subject to CH
vwv = fv,

(39)

Similar to the TLCMV problems, (38) and (39) may become ill-posed for unfa-
vorable angles of arrival and thus are regularized by the `2-norm penalization
terms, weighted by the positive scalars δh and δv. The solutions of the Kronecker
LCMV (KLCMV) problems (40) and (39) are given by

wKLCMV,h = (Rxhxh
+ δhINh

)−1Ch

[
CH
h (Rxhxh

+ δhINh
)
−1
Ch

]−1
fh,(40)

wKLCMV,v = (Rxvxv
+ δvINh

)−1Ch

[
CH
v (Rxvxv

+ δvINv
)
−1
Cv

]−1
fv. (41)

Note that the KLCMV solutions are independent, i.e., (40) and (41) do not
depend on each other, as it is observed in the TLCMV solutions. Therefore,
an iterative optimization procedure is unnecessary. Once these sub-filters are
calculated, we build the full solution as wKLCMV = wKLCMV,v⊗wKLCMV,h. The
KLCMV beamformer is outlined in Algorithm 2 and the associated number of
multiplications is specified in Table 3.

Algorithm 2 Kronecker LCMV beamformer
Require: δh, δv, fh, fv
1: Compute Rxhxh

by (34) or (36)
2: Update wh by (40)
3: Compute Rxvxv by (35) or (37)
4: Update wv by (41)
5: return w ← wv ⊗wh

3.2. Frost-Type Beamformers
In some situations, adaptive solutions may be preferred over “block” solu-

tions, like the LCMV-type beamformers, due to their ability to track parameter

13



Table 3: Computational complexity of the KLCMV beamformer (Algorithm 2).
Line Number of multiplications

1 If (34): N2
hR+NhR

2

If (36): N2
hK

2 2N2
hR+ 2NhR

2 +R2 +O(N3
h) +O(R3)

3 If (35): N2
vR+NvR

2

If (37): N2
vK

4 2N2
vR+ 2NvR

2 +R2 +O(N3
v ) +O(R3)

5 N

variations. Moreover, inverting correlation matrices may still bring overwhelm-
ing computational complexity. As a solution, one can implement the LCMV-
type beamformers using the stochastic gradient method to tackle these short-
comings. For completeness, we first recall the conventional Frost’s beamformer,
which is the stochastic gradient implementation of the classical LCMV filter.
Then, the proposed separable extensions of Frost’s algorithm are formulated.

3.2.1. Frost’s Algorithm
One can solve the LCMV problem (11) by means of the stochastic gradient

method to avoid inverting correlation matrices. This solution is known as Frost’s
algorithm [21]. From (13), it follows that the gradient descent formula is

w[k + 1] = w[k]− µ∇w∗J(w[k],λ[k])

= w[k]− µ(Rxxw[k] +Cλ[k]), (42)

where µ is a positive step size factor. The filter update (42) has to satisfy the
linear constraint CHw[k+1] = f . Therefore, we insert (42) into this constraint
and solve for λ[n]:

λ[k] =
1

µ
(CHC)−1CHw[k]− (CHC)−1CRxxw[k]− 1

µ
(CHC)f . (43)

We derive the Frost’s algorithm update formula by plugging (43) into (42),
approximating the correlation matrix as Rxx ≈ x[k]xH[k], and defining P =
IN −C(CHC)−1CH and f̃ = C(CHC)−1f [21]:

w[k + 1] = f̃ + P (w[k]− µRxxw[k])

= f̃ + P (w[k]− µx[k]y∗[k]).

In order to iterate towards a global minimum, the algorithm has to be initialized
such that the linear constraints are satisfied. A typical initialization is w[0] =
f̃ [21]. This beamformer is summarized in Algorithm 3 and its computational
complexity is evaluated in Table 4.

Frost’s algorithm is shown to converge to the LCMV solution wopt, given by
(14), if the step size µ satisfies 0 < µ < 1/λmax, where λmax denotes the largest

14



eigenvalue of PRxxP
H. For future convenience, we review the convergence

proof presented in [21]. First, consider the following identities:

f̃ = wopt − Pwopt, (44)
PRxxwopt = 0N×1, (45)

P 2 = P . (46)

Equation (44) is obtained by manipulating the product Pwopt, (45) is simply
derived by plugging (14) into the equation, and the idempotence of P in (46)
follows directly from its definition. Now, define the mean value of the weight
vector E [w[k + 1]] = f̃ + P (E [w[k]] − µRxxE [w[k]]). Substituting (44) and
(45) into E [w[k + 1]] yields:

E [w[k + 1]] = wopt − Pwopt +

0N×1︷ ︸︸ ︷
PRxxwopt +P (E [w[k]]− µRxxw[k]) (47)

Subtracting wopt from (47):

E [w[k + 1]]−wopt = P (E [w[k]]−wopt − µRxx(E [w[k]]−wopt)) (48)

Define v[k] = E [w[k]]−wopt ∈ CN as the mean distance vector from the optimal
solution. Then, (48) can be expressed as

v[k + 1] = Pv[k]− µPRxxv[k]. (49)

Pre-multiplying (49) by P and applying its idempotence property (46) shows
that Pv[k] = v[k]. Thus, (49) can be expressed as

v[k + 1] = (IN − µPRxxP )v[k]

= (IN − µPRxxP )k+1v[0] (50)

In [21], the author argues that v[0] = f̃ − wopt can be expressed as a linear
combination of the non-zero PRxxP corresponding to non-zero eigenvalues. If
v[0] is set to any eigenvector of PRxxP , say qi, with eigenvalue λi 6= 0, then
(50) becomes

v[k + 1] = (1− µλi)k+1qi,

i.e., the mean distance vector along any eigenvector qi of PRxxP becomes a
geometric series with ratio (1 − µλi) [21]. Therefore, if the step size is chosen
so that 0 < µ < 1/λmax, then the norm of v[k + 1] is bounded as [21]

(1− µλmax)
k+1 ‖v[0]‖2 ≤ ‖v[k + 1]‖2 ≤ (1− µλmin)

k+1 ‖v[0]‖2 ,

where λmin is the smallest eigenvalue of PRxxP . Consequently, limk→∞ ‖v[k]‖2 = 0
and w[k] converges to wopt.

In practice, however, the eigenvalues of Rxx are probably unknown and
the condition 0 < µ < 1/λmax becomes hard to verify. In [21], this condition
is relaxed to 0 < µ < 2

3Tr(Rxx)
by using some bounds on the steady-state

misadjustment. The latter condition is simpler to calculate than the former,
since Tr(Rxx) = E

[
‖x[k]‖22

]
represents the received signal vector power and

can be easily estimated.
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Algorithm 3 Frost’s algorithm
1: P ← IN −C(CHC)−1CH

2: f̃ ← C(CHC)−1f
3: w[0]← f̃
4: for k = 0, . . . ,K − 1 do
5: y[k]← wH[k]x[k]
6: w[k + 1] = f̃ + P (w[k]− µx[k]y∗[k])
7: end for
8: return w[k + 1]

Table 4: Computational complexity of Frost’s beamformer (Algorithm 3).
Line Number of multiplications
1 N2R+NR2

2 NR2 +NR+R2 +O(R3)
5 KN
6 K(N2 +N + 1)

3.2.2. Separable Frost Algorithms
A first strategy to design a separable beamformer w = wv ⊗ wh consists

of applying the stochastic gradient method to the sub-array input signals uv[k]
and uh[k] (see Section 3.1.2). Since these input signals are coupled, we employ
block coordinate descent, as in TLCMV. This beamformer can be regarded as
an adaptive TLCMV implementation, thus we call it Tensor Frost (TFrost).
It is summarized in Algorithm 4 and the complexity associated with each step
is provided in Table 5. Another approach to separable beamformer design is
to independently optimize sub-array beamformers, as done in KLCMV (see
Section 3.1.3). At each Frost iteration, two independent sub-filters are computed
as described in Algorithm 5, which we refer to as Kronecker Frost (KFrost). The
computational cost of the KFrost algorithm is presented in Table 6.

Theoretical analysis of coupled adaptive filters is not straightforward [29].
The convergence proof of the classical Frost’s algorithm discussed in Section 3.2.1
assumes that the filter input signal is stationary, implying Rxx does not change
over k. Unfortunately, this is not the case for TFrost, as the related corre-
lation matrices change whenever wh[k] or wv[k] are updated. However, we
can still obtain meaningful convergence results from TFrost. Let us consider
the optimization of wh[k] keeping wv[k] fixed. The horizontal sub-array input
correlation matrix Ruhuh

[k] = E
[
X[k]w∗v [k]w

T
v [k]X

T[k]
]
does not vary as long

wv[k] remains fixed, and, thus, the convergence analysis of Section 3.2.1 applies.
For fixed Ruhuh

[k], a quadratic surface, whose minimum point is achieved by
the horizontal TLCMV filter (30), is available. Hence, the local optimization
with respect to wh[k] is guaranteed to converge as long as the horizontal step
size µh satisfies 0 < µh < 1/λh,max[k], where λh,max[k] stands for the largest
eigenvalue of PhRuhuh

[k]Ph. The same argument holds for the vertical sub-
filter; wv[k] converges to the vertical TLCMV filter (31) with fixed wh[k + 1]
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Table 5: Computational complexity of the Tensor Frost beamformer (Algorithm 4).
Line Number of multiplications
1 N2

hR+NhR
2 +N2

vR+NvR
2

2 NhR
2 +NhR+NvR

2 +NvR+ 2R2 + 2O(R3)
5 KNhNv
6 KNh
7 K(N2

h +Nh + 1)
8 KNhNv
9 KNv
10 K(N2

v +Nv + 1)
12 NhNv

as long as the vertical step size µv is within the interval 0 < µv < 1/λv,max[k].
As the TLCMV block coordinate descent iterates, the optima points (given by
the TLCMV sub-filters) also iterates until convergence (see Section 3.1.2) and
so do the TFrost sub-filters. Note that the TFrost step size conditions to con-
vergence can be relaxed to 0 < µh <

2
3Tr(Ruhuh

[k]) and 0 < µv <
2

3Tr(Ruvuv [k])

by following the same reasoning presented in [21].
The convergence analysis of KFrost is relatively simpler to discuss, as it ba-

sically consists of two independent Frost sub-filters and the correlation matrices
Rxhxh

andRxvxv
are static. Let ηh,max and ηv,max denote the largest eigenvalues

of PhRxhxh
Ph and PvRxvxv

Pv, respectively. Therefore, the KFrost sub-filters
wh[k] and wv[k] are guaranteed to converge to the KLCMV sub-filters (40) and
(41) if the corresponding step size factors µh and µv satisfy 0 < µh < 1/ηh,max
and 0 < µv < 1/ηv,max, respectively. These conditions can be relaxed to [21]:
0 < µh <

2
3Tr(Rxhxh

) and 0 < µv <
2

3Tr(Rxvxv )
.

Algorithm 4 Tensor Frost algorithm
1: Ph ← INh

−Ch(CH
hCh)

−1CH
h and Pv ← INv −Cv(CH

vCv)
−1CH

v

2: f̃h ← Ch(C
H
hCh)

−1fh and f̃v ← Cv(C
H
vCv)

−1fv
3: wh[0]← f̃h and wv[0]← f̃v
4: for k = 0, . . . ,K − 1 do
5: uh[k]←X[k]w∗v [k]
6: yh[k]← wH

h [k]uh[k]

7: wh[k + 1] = f̃h + Ph(wh[k]− µhuh[k]y∗h[k])
8: uv[k]←XT[k]w∗h[k]
9: yv[k]← wH

v [k]uv[k]
10: wv[k + 1] = f̃v + Pv(wv[k]− µvuv[k]y∗v [k])
11: end for
12: return wv[k + 1]⊗wh[k + 1]
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Algorithm 5 Kronecker Frost algorithm
1: Ph ← INh

−Ch(CH
hCh)

−1CH
h and Pv ← INv

−Cv(CH
vCv)

−1CH
v

2: f̃h ← Ch(C
H
hCh)

−1fh and f̃v ← Cv(C
H
vCv)

−1fv
3: wh[0]← f̃h and wv[0]← f̃v
4: for k = 0, . . . ,K − 1 do
5: yh[k]← wH

h [k]xh[k]
6: yv[k]← wH

v [k]xv[k]
7: wh[k + 1] = f̃h + Ph(wh[k]− µhxh[k]y∗h[k])
8: wv[k + 1] = f̃v + Pv(wv[k]− µvxv[k]y∗v [k])
9: end for

10: return wv[k + 1]⊗wh[k + 1]

Table 6: Computational complexity of Kronecker Frost beamformer (Algorithm 5).
Line Number of multiplications
1 N2

hR+NhR
2 +N2

vR+NvR
2

2 NhR
2 +NhR+NvR

2 +NvR+ 2R2 + 2O(R3)
5 KNh
6 KNv
7 K(N2

h +Nh + 1)
8 K(N2

v +Nv + 1)
10 NhNv

4. Simulation Results

In this section, we present the results of numerical experiments to compare
the source recovery and computational performances of the proposed beam-
forming methods. As figure of merit, we consider the output SINR, which is
defined as the desired signal power over the interference plus noise power after
beamforming, i.e.,

SINRout =
wHRddw

wH(Rii +Rbb)w
.

First, let us present and discuss the results of the LCMV-type beamformers,
which were obtained by Monte Carlo (MC) simulations from 1000 runs. At
each MC experiment, a novel array manifold matrix A realization is generated.
We set as system parameters U = 4 wavefronts and SIR = −5dB. Hereafter,
we refer to the solutions obtained with perfect statistics knowledge as analytical
and to those which employ statistical estimates as sample solutions. We consider
in our simulations only square arrays, i.e., the system has NhNv = N antennas,
with Nh = Nv, although the proposed methods could be directly applied to
uniform rectangular arrays in general. In wireless communications systems, the
base-stations may employ rectangular arrays to increase the spatial resolution in
a desired angular domain (usually azimuth). In [30], for example, 5G-compliant
systems with 4 × 4 and 4 × 2 dual-polarized antennas are considered. We set
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Figure 2: I = 2 (analytical), I = 3 (sample), K = 104 snapshots.

the TLCMV convergence threshold to ε = 10−3. We carried out preliminary
experiments to study the choice of the regularization parameter δ and observed
that any δ ≥ 0.5 is sufficient to fix the numerical instability issue and to improve
robustness to short sample support. Therefore, we set δ = δh = δv = 1 in our
simulations. Moreover, preliminary simulations have shown that analytical and
sample TLCMV converge within 2 and 3 iterations, respectively, over a wide
SNR range. We therefore use these values when calculating the curves plotted
in Figure 2.

Before discussing the output SINR performance, let us compare the compu-
tational performance of the LCMV-type beamformers listed in Tables 1, 2, and 3
as a function of the array size N . The number of multiplications required by
each method to design the beamforming filter is plotted in Figure 2. The total
number of multiplications carried out by TLCMV is calculated by multiplying
the values listed in Table 2 by the number I of iterations until convergence.
This result confirms that both proposed separable methods exhibit less compu-
tational complexity than the classical method. We note that TLCMV requires
more calculations than KLCMV. This is because the former employs an iter-
ative procedure and also the correlation matrices calculation is more involved.
One can note that the sample solutions are more expensive than the analyti-
cal solutions since the correlation matrices estimation averages over K = 104

snapshots.
The proposed methods yield significant calculations saving in both analytical

and sample scenarios (at least by one order of magnitude at N = 256), however,
do they exhibit source recovery performance loss? To find out, let us consider
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Figure 3: Nh = Nv = 8, K = 104 snapshots.
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Figure 5: K = 104 snapshots, SNR = 0dB.

Figure 3, where the output SINR was obtained for different SNR values for an
(8 × 8)-antennas array. We first notice that there is always a 3dB difference
between the classical and separable approaches. Since the classical LCMV does
not constrain the solution set to Kronecker filters, it is natural that it performs
better than the other approach. Figure 3 also reveals that the source recovery
performances of the TLCMV and KLCMV are practically the same (although
KLCMV is much less expensive than TLCMV). Therefore, we conclude that the
proposed separable solutions yield a 3dB due to the separability filter constraint.

To assess the influence of the number K of snapshots on the TLCMV-type
beamformers performance, we computed the output SINR for different K values
in Figure 4. The performance of the analytical filters is independent of K,
so it serves as an upper bound for the corresponding sample solutions. This
figure reveals that while source recovery quality of LCMV strongly depends on
the number of snapshots, the separable filters are rather robust to it. This
is because there are fewer statistics to estimate when designing the separable
beamforming filter factors compared to the full-filter solution. For K = 100 at
0dB SNR, the separable filters yield 15dB SINR at the output, while LCMV-
sample filter yields 8dB. This result accentuates the superior computational
performance of the separable strategy for the sample beamformers.

We finally investigate the behavior of the LCMV-type beamformers for dif-
ferent array sizes, from N = 16 to N = 256, in Figure 5. Please note that
N = 4 × 4 is the smallest possible array for U = 4 wavefronts. Smaller arrays
would not offer sufficient degrees of freedom to invert the correlation matrices
required to compute the filter coefficients vector. This figure reveals that there is
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an important performance gap between the full and separable approaches when
the array is relatively small. In this case, the inaccuracy of the small sub-filters
limits the performance of the separable approaches. For N = 16 antennas, the
LCMV filter produces relatively sharp beams towards the desired wavefront,
while accurately placing nulls at the interfering directions, in contrast to the
TLCMV and KLCMV sub-filters that roughly apply this spatial processing.
Such an issue is discussed in [16] for MMSE-type beamformers. Therein, the
array factors of separable methods are compared to those of the full MMSE
beamformer to support this argument, and the same reasoning applies here.
This performance gap, however, is decreased as the array size grows: the TL-
CMV and KLCMV sub-filters become more accurate, ameliorating the overall
beamformer performance. Moreover, we observe that the behavior of sample
LCMV saturates as N grows, whereas the sample separable filters approach the
analytical LCMV. As the dimensions of the correlation matrix Rxx grow, more
and more snapshots are required by LCMV to achieve a certain output SINR
level, explaining its poor performance in the massive array scenario. On the
other hand, for N = 256 antennas, for example, the separable filters need to
estimate two (16× 16)-dimensional correlation matrices.

We now present the results obtained with Frost-type beamformers, consid-
ering Monte Carlo experiments of 20 runs and setting the step-size factor to
µ = 10−2. In Figure 6, the number of multiplications demanded by the beam-
forming methods are plotted. This figure indicates that the separable Frost
algorithms require fewer calculations than the classical Frost algorithm. It also
shows that the computational complexities of TFrost and KFrost are basically
the same. But what about their convergence rate? To analyze that, we first
consider Figure 7, where the output SINR evolution with the algorithm itera-
tion is shown for SNR of 0dB and 30dB and N = 64 antennas. One can see
that there is a 7dB gap between the separable and full Frost algorithms. This
gap disappears at high SNR, however. Another interesting feature of the sepa-
rable beamformers is that they exhibit small fluctuation (misadjustment) after
convergence is achieved. We notice that both Frost implementation strategies
exhibit the same convergence properties: a few hundred iterations to converge
at low SNR, and very few steps to converge at high SNR. We extend these
results to a scenario with N = 14 × 14 antennas in Figure 8. At 0dB SNR,
we observe that the separable Frost algorithms converge faster than the clas-
sical Frost’s algorithm while achieving essentially the same SINR at the filter
output. At 30dB SNR, however, this advantage fades out, and all Frost-type
algorithms exhibit the same performance. From these experiments, we conclude
that the separable Frost algorithms exhibit superior performance than the clas-
sical Frost’s algorithm in the computational sense, and they yield better source
performance, especially in the low SNR regime.

5. Conclusion

We introduced separable linearly constrained beamformers and analyzed
their computational and source recovery performance through computer simula-
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tions. We conducted a theoretical computational analysis of each beamforming
method and discussed their convergence. Our simulation results emphasize the
computational efficiency of our methods. The proposed KLCMV filter yields
the best computational cost-source recovery trade-off among the LCMV-type
beamformers. The proposed separable Frost-type algorithms exhibit better per-
formance than the classical Frost’s algorithm, especially in the low SNR regime.
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