
Transceiver Design for Large-Scale Systems

Lucas N. Ribeiro

Federal University of Ceará, Fortaleza, Brazil
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Introduction

• Research and engineering interest on large-scale systems

• Our focus: large-scale multi-antenna systems
• Very large aperture arrays
• Massive multiple-input multiple-output (MIMO)

• Why the interest?
• High spatial resolution
• Large beamforming gain
• Better interference rejection
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Introduction

• Challenges
• Energy and computational efficiencies
• Channel state information (CSI) acquisiton

• Proposed solutions
• Multi-linear (tensor) filtering
• Layered filtering
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Multi-linear filtering

• Linear and time-invariant filter: w = [w1, . . . , wN ]T

• Multi-linear and time-invariant filter:

w = w1 ⊗ . . .⊗wM ∈ CN

where wm ∈ CNm with
∏M
m=1Nm = N

• Basic idea: design each factor instead of the whole vector

• Questions
• Fewer computations?
• How much performance loss, if any?

• Application: beamforming
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Uniform planar array

unit ball

wavefront

• Far-field propagation and
narrow-band signal
assumptions

• No coupling

• Uniform planar array (UPA)
response vector

a(φr, θr) = [an(φr, θr)]

an(φr, θr) = gn(φr, θr)︸ ︷︷ ︸
element response

· ejπ[(nh−1) sinφr sin θr+(nv−1) cos θr]︸ ︷︷ ︸
relative phase shift
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• Let’s ignore the element responses gn for the moment
• Array response vector rewritten as

a(φr, θr) =


1

ejπ cos θr

...
ejπ(Nv−1) cos θr

⊗


1

ejπ sinφr sin θr

...
ejπ(Nh−1) sinφr sin θr


= av(qr)⊗ ah(pr)

with N = Nh ·Nv, pr = sinφr sin θr and qr = cos θr.

• Response vector is separable in horizontal and vertical domains

• Separable filter w = wv ⊗wh

• Array factor:

AF = wHa(pr, qr) = [wH
v av(qr)] · [wH

hah(pr)]

= AFv ·AFh

• Optimize each sub-array individually!
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Is this model valid?

8-elements uniform linear array. Ideal BP
(separable) and BP with mutual coupling1.

• Beampattern (BP) is not
separable in general

• Antenna response and mutual
coupling not important in
some scenarios

• Approximate separable
model

1 C. M. Schmid, et al., “On the effects of calibration errors and mutual coupling on the beam pattern of an antenna array,” IEEE
Transactions on Antennas and Propagation 61.8 (2013): 4063-4072.
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Tensor filters

Separable beamformers
• Tensor MMSE and Tensor LMS [Ribeiro et al., 2019b]

• Tensor LCMV and Tensor Frost [Ribeiro et al., 2019a]

What if the system is not separable?
• Low-rank Tensor MMSE
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Tensor MMSE – Signal model

• Received signal model – R incoming signals

x[k] =

R∑
r=1

a(pr, qr)sr[k] + b[k] = As[k] + b[k] ∈ CN

• Assumptions
• Separability: A = Av �Ah ∈ CN×R

• Separable filter: w = wv ⊗wh

• Filtered signal

y[k] =

N∑
n=1

[w]∗nxn[k] =

Nh∑
nh=1

Nv∑
nv=1

[wh]∗nh
[wv]

∗
nv
xnh,nv

[k]

= wH
hX[k]w∗v = wH

vX[k]Tw∗h

with n = nh + (nv − 1)Nh

8 / 30



• Let

uh[k] = X[k]w∗v ∈ CNh , uv[k] = X[k]Tw∗h ∈ CNv

• Training sequences sd[k]

• We formulate – mean square error (MSE) criterion

min
wv,wh

JMSE(wh,wv)

where

JMSE(wh,wv) = E
[∣∣sd[k]−wH

huh[k]
∣∣2] (1)

= E
[∣∣sd[k]−wH

vuv[k]
∣∣2] (2)

• Block coordinate descent: solve (1) and (2) in alternate fashion
(TMMSE filter)
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Computational complexity
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• MMSE: O(N3) flops

• TMMSE: O(I(N3
h +N3

v )) flops

• I: number of iterations

• Nh, Nv ≤ N
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Bit error rate
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Nh ×Nv = 8× 8, R = 4 wavefronts.
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Array factor

MMSE TMMSE

Desired signal (asterisk), interfering signals (cross)
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• TMMSE reduces calculations

• Needs fewer samples to estimate statistics (compared to MMSE)

• Performance cost (high SNR)

• Strong degradation when R > min(Nh, Nv)

Questions
• Perforance with more elaborate channel model?

• Higher filter order? E.g., w = w1 ⊗w2 ⊗w3?

13 / 30



Non-separable system

• MIMO system, U users, uplink scenario

x[k] =

U∑
u=1

Husu[k] + b[k]

• Channel model

Hu =

L∑
`=1

αu,`a(θu,`)g(τu,`)
T ∈ CN×Q

a(θu,`) =
[
1, . . . , e−π(N−1) cos θu,`

]T
∈ CN

g(τu,`) = [g(−τu,`), . . . , g((Q− 1)T − τu,`)]T ∈ CQ

• Hu is not separable; but admits a low-rank structure
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Low-rank equalizer

• Rank-1 order M filter

w = w1 ⊗ . . .⊗wM

• Rank-R order M filter

w =

R∑
r=1

w1,r ⊗ . . .⊗wM,r

• Number of parameters
• Linear filter: N
• Low-rank multi-linear filter: R(N1 + . . . + NM )
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Low-rank Tensor MMSE2

• We formulate for each filter mode

min
wd

E
[
|su[k − δ]−wH

dud[k]|2
]
, d ∈ {1, . . . , D}.

where

ud[k] =
[
uT
d,1[k], . . . ,uT

d,R[k]
]T ∈ CRNd

ud,r[k] = X(d)[k]

D⊗
q 6=d

w∗q,r ∈ CNd

wd =
[
wT
d,1, . . . ,w

T
d,R

]T ∈ CRNd

• Block coordinate descent sweeping between modes

2 To be presented at IEEE ISWCS 2019, Oulu, Finland
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Symbol recovery performance
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N = 512 antennas, SNR = 20 dB, filter order D = 3, U = 4 users, L = 4 paths.
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Conclusion

• ↑ filter order ↑ calculations: tensor overhead
• number of tensor products, unfoldings, etc, increase with tensor

order!

• ↑ rank ↑ equalization performance (up to a point)

• Fewer samples to estimate covariance matrices

• Attractive complexity/performance trade-off

Research perspectives
• Incorporate non-idealities

• Simulations with realistic arrays (HFSS)

• Low-rank beamforming
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Introduction

• Efficient hardware architectures for mmWave massive MIMO
• Analog? Digital? Hybrid analog/digital?
• Fully- or partially-connected hybrid?

• We found3

• full digital and partially-connected hybrid
• + coarse quantization (∼ 3 bits)
• are most energy-efficient structures
• single-user MIMO scenario and perfect CSI

• Transceiver schemes with practical CSI requirements?

3 L. N. Ribeiro, S. Schwarz, M. Rupp, A. L. F. de Almeida, “Energy efficiency of mmWave massive MIMO precoding with
low-resolution DACs,” IEEE Journal of Selected Topics in Signal Processing 12.2 (2018): 298-312.
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Double-sided massive MIMO

• Massive MIMO at both base station (BS) and user equipment
(UE)4

• Why?
• Potentially better performance than canonical massive MIMO
• Wireless backhauling, terahertz communications, unmanned aerial

vehicle communcations, etc

• Contributions
• Low-complexity transceiver scheme with practical CSI

requirements
• Performance evaluation under different propagation conditions

4L. N. Ribeiro, S. Schwarz, A. L. F. de Almeida, “Double-Sided Massive MIMO Transceivers for MmWave Communications,” arXiv
preprint arXiv:1907.08750 (2019).
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Multi-layer precoding – System model
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Multi-layer precoding – Schemes

• Both full-digital and hybrid A/D architectures

• Outer layer – increase SNR
• Covariance matrix eigenfilter (CME)
• Power-dominant path selection (PPS)
• Semi-orthogonal path selection (SPS)

• Inner layer – cancel multi-user interference out
• Max. Eig. Tx. (MET) - Max. Eig. Rx. (MER)
• MET-Block diagonalization (BD)
• MET-MMSE
• BD-MER

• When BD conditions for zero multi-user interference are not met,
apply “minimal interference precoding”
of [Schwarz and Rupp, 2014]
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Multi-layer precoding – CSI assumptions

CSI assumptions
• Statistical CSI – of uplink and downlink cov. matrices

• Partial CSI – paths power, departure and arrival angles

Design stages
1. Calculate outer filters w/ available CSI
2. Efficiently estimate low-dimension effective channels
3. Calculate inner filters w/ effective CSI
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Outer layer – CME and PPS

Covariance matrix eigenfilter
• Outer filters as uplink and downlink cov. matrices eigenvectors

• Statistical CSI

• Relatively simple

Power-dominant path selection
• Points to the strongest path directions

• Partial CSI

• Very simple, but naive (correlation issues)
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Outer layer – SPS

• Sophistication of the power-dominant path selection

• Among the L paths, select the M < L “most semi-orthogonal”

• Inspired on semi-orthogonal user selection scheduling
scheme [Yoo and Goldsmith, 2006]

Pseudo-code
• Initialize index sets S (selected) and Λ (non-selected)

• While #(S) < M

1. Form orthogonal projections for paths in Λ
2. Select new path
3. Update S and Λ

• Return S
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Simulation results

• Investigate spatial multiplexing capabilities

• Needs enough degrees of freedom

• Evaluation under different channel scattering conditions
• Poor scattering – L = 8 rays – pessimistic and realistic for

mmWave
• Rich scattering – L = 64 rays – optimistic and plausible for sub-6

GHz (Rayleigh regime)

• Outer layer simulations: effect of Ns/L on sum rate (number of
data streams scaling) and U = 1 UE

• Inner layer simulations: influence of number U of UEs on
performance (Ns = 1)

27 / 30



Simulation results – Outer layer
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Simulation results – Inner layer
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Conclusion

• Semi-orthogonal path selection best performance (when Ns/L
not close to 1)

• Covariance matrix eigenfilter robust and less complex

• BD-MER and MET-MMSE best throughput

• Latter is more robust to UE congestion and poor scattering

Research perspectives
• Evaluation in more practical scenarios

• Imperfect CSI robust transceivers

• Exploit channel structure to simplify precoding, feedback,
channel estimation, etc
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Thank you!
Questions?

E-mail: lucasnogrib@gmail.com

Slides will be available at http://lnribeiro.github.io
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