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Abstract. This work presents an application of Uncertainty Quantification (UQ) ap-

proaches to a Multiple-Input Multiple-Output (MIMO) system. The use of UQ tech-

niques in this field is new and is one of the originalities of the paper. A second origi-

nality of this work is to furnish an efficient method to deal with non-gaussian noise, 

with non-zero mean. A third originality is that the method proposed allows the estima-

tion of the noise, of the channel and the decoding of messages - the approach makes all 

the chain: determination of the distribution of the noise, identification of the Channel 

Matrix and detection of the symbols transmitted.  The first step is made by using UQ 

techniques, which furnish the distribution of the noise, without assumption of Gaussian 

distribution or a mean equal to zero. A new application of UQ techniques furnishes the 

channel matrix. Then, the detection of symbols is performed by a method based on the 

determination of a selection matrix formed by lines of the identity matrix. Numerical 

examples show that the proposed approach is practical and efficient. 

Keywords: Uncertainty Quantification, Identification, MIMO systems. 

1 Introduction 

Multiple-input multiple-output (MIMO) systems involve a transmitter entity with mul-

tiple inputs which communicates with a receiver entity with multiple outputs. MIMO 

systems are typically adopted to describe many communication systems, including 

wireless [1], acoustic [2], and underwater systems [3-5]. These different communica-

tion scenarios are often deployed in uncontrolled and changing environments, hereafter 

referred to as communication channels. Therefore, the messages sent and received in-

volve noise, measurement errors, and modeling errors that compromise proper decod-

ing. 

A widely adopted channel model in wireless communications is the Rayleigh fading [1, 

Chapter 3], wherein the received signals can be described in terms of a channel matrix 
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with Gaussian-distributed elements and an additive noise component. To ensure proper 

message detection, the receiver needs to correctly identify the channel matrix and the 

additive noise distribution by means of an adapted procedure. In many application sce-

narios, it is usually assumed that the noise has a Gaussian distribution and that its sta-

tistics are known a priori [6]. Scenarios with non-Gaussian additive noise [4, 5] are 

little explored in the literature, as well as scenarios where the noise is multiplicative so 

that the performance of MIMO symbol detectors is not fully understood in these sce-

narios yet.  

In recent years, Uncertainty Quantification (UQ) proposed methods and tools to deal 

with general noise distributions, including non-Gaussian and multiplicative (see, for 

instance, [7-10]). These developments remain little exploited in the framework of Tel-

ecommunications. This work explores the use of UQ approaches to deal with noise in 

MIMO, namely for Channel and Noise Identification, then for Message decoding. 

In the following, we present a novel pilot-based channel estimation method for a gen-

eral additive noise, eventually non-Gaussian. As an example, we consider uniform and 

Laplace distributions, what shows that the approach is effective to calculate in non-

Gaussian situations. These examples are chosen as an illustration, without loss of gen-

erality – other noise distributions can be assumed for the approach proposed. The UQ 

approach resumes as follows: 

• In a first step, we determine the distribution of the noise, using a few measurements 

in “silent mode”, where the transmitter does not transmit anything. UQ approach 

furnishes a fine estimation of the noise distribution from a small number of meas-

urements, so that we obtain good estimates of the statistics of the noise from a few 

measurements. 

• In a second step, we identify the channel matrix using a pilot method: the transmitter 

sends convenient pilot symbols that allows the receiver to identify successively each 

column of the matrix channel individually.  

• Finally, we use the results of these steps to decode messages and we analyze the 

error rate in some situations, with different alphabets. 

2 System Model 

Let us consider a single-user multiple-input multiple-output (MIMO) system with 𝑁𝑁𝑡𝑡 transmission and 𝑁𝑁𝑟𝑟 reception antennas. Under the flat fading assumption, the dis-
crete-time received signal vector 𝒚𝒚 ∈ ℂ𝑁𝑁𝑟𝑟  is given by  

 𝒚𝒚 =  𝑯𝑯𝑯𝑯 +  𝒏𝒏 ,     (1) 

where 𝑯𝑯 ∈ ℂ𝑁𝑁𝑡𝑡 is the vector of the transmitted signal, 𝑯𝑯 ∈ ℂ𝑁𝑁𝑟𝑟×𝑁𝑁𝑡𝑡 is the channel ma-

trix, and 𝒏𝒏 ∈ ℂ𝑁𝑁𝑟𝑟×1 is a vector of additive noise. Assuming independent and identically 

distributed (i.i.d.) Rayleigh fading, the elements of 𝑯𝑯 are i.i.d. complex Gaussian ran-

dom variables with zero mean and unit variance. Each transmitted signal  𝑯𝑯𝒏𝒏, 𝑛𝑛 =

 1, . . . ,𝑁𝑁𝑡𝑡, consists of a digitally-modulated symbol in the constellation alphabet   𝒂𝒂, of 

order 𝑀𝑀:  𝒂𝒂 = (𝑎𝑎1, … ,𝑎𝑎𝑀𝑀)  ∈ ℂ𝑀𝑀.  
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3 

If convenient, the complex-valued signal model (1) may be rewritten in terms of its real 

and imaginary parts as follows: 

 𝒚𝒚� = 𝑯𝑯�𝑯𝑯� + 𝒏𝒏� (2) 

with 

 𝒚𝒚� = �𝒚𝒚𝒓𝒓𝒓𝒓𝒚𝒚𝒊𝒊𝒊𝒊� , 𝑯𝑯� = �𝑯𝑯𝒓𝒓𝒓𝒓 −𝑯𝑯𝒊𝒊𝒊𝒊𝑯𝑯𝒊𝒊𝒊𝒊 𝑯𝑯𝒓𝒓𝒓𝒓 � , 𝑯𝑯� = �𝑯𝑯𝒓𝒓𝒓𝒓𝑯𝑯𝒊𝒊𝒊𝒊� , 𝒏𝒏� = �𝒏𝒏𝒓𝒓𝒓𝒓𝒏𝒏𝒊𝒊𝒊𝒊� (3) 

  

Here, we denote  𝝃𝝃𝒓𝒓𝒓𝒓 = 𝑅𝑅𝑅𝑅(𝝃𝝃) and  𝝃𝝃𝒊𝒊𝒊𝒊 = 𝐼𝐼𝐼𝐼(𝝃𝝃). Thus,  𝒚𝒚� ∈ ℝ2𝑁𝑁𝑟𝑟, 𝑯𝑯� ∈ ℝ2𝑁𝑁𝑟𝑟×2𝑁𝑁𝑡𝑡, 𝑯𝑯� ∈ ℝ2𝑁𝑁𝑡𝑡 , 𝒏𝒏� ∈ ℝ2𝑁𝑁𝑟𝑟, which are real-valued vectors  corresponding to the received sig-

nal, the channel matrix, the transmitted signal, the additive noise, respectively.  

3 Determination of the distribution of the noise 

As previously observed, the determination of the distribution of the noise may be 

performed in a “silent mode”, where the transmitter does not transmit anything. In this 

case, the signal 𝑯𝑯  in Eq. (1) becomes  𝑯𝑯 = 𝟎𝟎, so that 𝑯𝑯� = 𝟎𝟎 in Eq. (2). The received 

message is  𝒚𝒚 =   𝒏𝒏,  𝒚𝒚� = 𝒏𝒏� . Taking 𝑠𝑠 measurements, we generate a sample 𝒩𝒩 =

{𝒏𝒏𝟏𝟏, … ,𝒏𝒏𝒔𝒔} of the noise, which is brought to a matrix 𝑵𝑵 = (𝒏𝒏𝟏𝟏, … ,𝒏𝒏𝒔𝒔)  ∈ ℂ𝑁𝑁𝑟𝑟× 𝑠𝑠  hav-

ing as columns the measurements for each realization:  𝑁𝑁𝑖𝑖𝑖𝑖 = 𝒏𝒏𝑖𝑖𝑖𝑖. The noise measure-

ments are also expanded into real and imaginary parts: 

 𝑵𝑵� = �𝑹𝑹𝒓𝒓(𝒏𝒏𝟏𝟏) ⋯ 𝑹𝑹𝒓𝒓(𝒏𝒏𝒔𝒔)𝑰𝑰𝒊𝒊(𝒏𝒏𝟏𝟏) ⋯ 𝑰𝑰𝒊𝒊(𝒏𝒏𝐬𝐬)� ∈ ℝ2𝑁𝑁𝑟𝑟× 𝑠𝑠                             (4) 

Using the UQ approach, we consider a Hilbert basis Φ =  {𝜑𝜑𝑛𝑛:𝑛𝑛 ∈ ℕ} and a random 

variable 𝑈𝑈 (for instance, uniform or Gaussian). Assuming that the noise has a finite 

second moment (i. e., that the noise is square summable), we have 

𝑁𝑁�𝑖𝑖 ≈�𝑐𝑐𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖(𝑈𝑈)

+∞
𝑖𝑖=0                                                 (5) 

In practice, we approximate the noise using a finite sum, truncated at order 𝑘𝑘: 

𝑁𝑁�𝑖𝑖 ≈�𝑐𝑐𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖(𝑈𝑈)

k
𝑖𝑖=0                                                 (6) 

Let us introduce  

 𝑪𝑪 = �𝑐𝑐𝑖𝑖𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑟𝑟 , 1 ≤ 𝑗𝑗 ≤ 𝑘𝑘�, 𝚽𝚽(U) = �𝜑𝜑0(U)⋮𝜑𝜑𝑘𝑘(U)
� . 
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Then 

 𝑁𝑁�𝑖𝑖 = �𝑪𝑪𝚽𝚽(𝑈𝑈)�𝑖𝑖                                                                    (7) 

Notice that, a priori, the random variable 𝑈𝑈 is different for each index 𝑖𝑖. The coeffi-

cients 𝑪𝑪 must be determined by one of the following UQ methods: collocation, varia-

tional approximation, moments matching. (See [10] for a detailed description). As an 

example, let us assume that  𝑁𝑁�1 is uniformly distributed on (−1, 1) and we have 𝑠𝑠 =

20 measurements of 𝑁𝑁�1: {𝑁𝑁�11, … ,𝑁𝑁�120}: 

Table 1. Measurements of  𝑁𝑁�1 

-0.0924 -0.0827    -0.0715    -0.0621    -0.0566    -0.0529     

-0.0158 -0.0133 0.0032 0.0083 0.0151     0.0193     0.0285     

0.0291 0.0297     0.0581     0.0807     0.0812     0.0828 0.0938 

 

Let 𝑈𝑈1 be Gaussian 𝑁𝑁(0,1). We consider a sample from 𝑈𝑈1 ∶ 
Table 2. A sample of 20 variates from the Gaussian distribution (randomly generated) 

-1.5932 -1.0216    -0.7483    -0.6147    -0.2585    0.2510      

0.0180 0.1335 0.1954 0.2398 0.3041 0.5680 0.6214 

0.6324     0.7506 0.8446 1.1717 1.2247 1.2325 1.5017 

 

 

Fig. 1. Hilbert approximation of a noise. The noise is uniformly distributed, but we consider a 

Gaussian variable in the expansions (5)-(6). The results are obtained by Moments Matching for 

the first 8 moments ([4]). 
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We apply the UQ approach with a polynomial basis 

𝜑𝜑𝑖𝑖(𝑈𝑈) =  �𝑈𝑈 − 𝑎𝑎𝑏𝑏 − 𝑎𝑎�i−1                                                 (8) 

where 𝑎𝑎 = min(𝑈𝑈)  and  𝑏𝑏 = max(𝑈𝑈). We take 𝑘𝑘 = 9 (thus, the degree of the polyno-

mial is 9). By using the Moments Matching Approach [4], with 8 moments, we obtain 

the coefficients given in Table 3: 

Table 3. Coefficients of the polynomial 𝑖𝑖 = 0 𝑖𝑖 = 1 𝑖𝑖 = 2 𝑖𝑖 = 3 𝑖𝑖 = 4 

-0.0927 9.416 -181.460 1449.778 -6246.36 𝑖𝑖 = 5 𝑖𝑖 = 6 𝑖𝑖 = 7 𝑖𝑖 = 8 𝑖𝑖 = 9 

15937.485 -24760.923 22981.886 -11704.300 2514.663 

 

As soon as the coefficients are obtained, we use the polynomial to generate a large 

sample formed by 1e4 variates from 𝑁𝑁�1. This large sample is used to generate an em-

pirical CDF of 𝑁𝑁�1. The resulting CDF is shown in Figure 1 above.  Notice that, despite 

the use of a Normal Variable in the expansion (5)-(6), the resulting distribution is close 

to a Uniform Variable. 

As an example, let us consider a 8 × 8 −MIMO System ( 𝑁𝑁𝑟𝑟 = 𝑁𝑁𝑡𝑡 = 8) such that 

the noise is additive and distributed as follows: 

• in the real part, it is uniformly distributed with mean -0.03 and variance 0.1;  

• in the imaginary part follows a Laplace’s distribution having a mean 0.02 and a var-

iance 0.1; 

• The components of the noise are mutually independent. 

 

These assumptions do not imply a loss of generality: indeed, the approach applies to 

arbitrary noises of finite variance, including dependent components. It is also possible 

to introduce a given covariance matrix as constraint to be verified. 

  

Fig. 2. Determination of the distribution of the noise: a typical result. Results for component 3: 

at left, the CDF of the real part; at right the CDF of the imaginary part 
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Let us consider 250 measurements of the noise. We use the approach by collocation 

([4]) with a polynomial basis involving 𝑘𝑘 =  3 (thus, a polynomial of degree 3) and 𝑈𝑈 

uniformly distributed on (0,1). By this way, we determine the coefficients 

(𝑐𝑐𝑖𝑖𝑛𝑛 ∶ 1 ≤ 𝑖𝑖 ≤ 16, 0 ≤ 𝑛𝑛 ≤ 3) of the approximation, which is, then, used to generate a 

large sample of 1𝑅𝑅4 variates from each component of the noise.  The large sample is 

used to generate the empirical distribution of the noise. The results obtained correspond 

to an error of 3.5 % in the CDF of the noise. We show above (Figure 2) a typical result 

– which are analogous for the other components.  

 

The results may be improved by using, on the one hand, a larger number of measure-

ments and, on the other hand, by using the approach by moment matching. For instance, 

for 1000 measurements, the error in the CDF is of 1.6 %.  The mean of the real part of 

the noise is estimated by the empirical mean of the large sample. We obtain the results 

shown in Table 4. As we may observe, the results are close to the real means.  

Table 4. Empirical means for each component (in ascending order: at left, the first component; 

at right, the 8th. one) 

Real -0.032    -0.030    -0.028    -0.027    -0.023 -0.032 -0.030 -0.023 

Imagi-

nary 
0.034  0.027   0.019 0.021 0.033 0.043 0.029 0.012 

 

To get some statistics about the behavior of the proposed method, we realized 1000 

approximations using different realizations of the noise and we analyzed the distribu-

tions of the errors.  We determined the empirical CDF by the same way as the one upper 

described: a Hilbert approximation by a polynomial of degree 4, then the generation of 

a sample of 1𝑅𝑅4 variates. The sample is used to determine the CDF. The PDF is found 

by particle derivation of the CDF (see [11]).  

 

Fig. 3.  PDF of −log (𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) for the real (at left) and the imaginary (at right) parts of the mean 

(natural logarithm) 
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In Figure 3 above, we exhibit the PDF obtained for the negative natural logarithms 

of the errors in the real and the imaginary parts of the mean of the noise (recall that it 

is not equal to zero): notice that the larger is the abscissa, the smaller is the error. We 

observe that both the distributions are unimodal. The mode for the real part is about 4.8 

and the mode for the imaginary part is about 3.6. Indeed, the statistics of the errors in 

the original sample of 1000 realizations are given in the Table 5 below 

Table 5. Statistics of the errors in the estimation of the mean of the noise. These values corre-

spond to about 3.6 % of error in the real part and 11 % in the imaginary part. 

 Mean Standard Deviation 

Real part 0.0087 0.0021 

Imaginary part 0.0273 0.0070 

 

We observe that the errors are larger in the imaginary part: this is connected to the 

original probability distribution: indeed, the estimation of the Laplace distribution mean 

appears to be harder. Improvements may be obtained by using other approaches, such 

as other Hilbert basis leading to approximations that are more accurate. 

4 Channel Estimation 

The standard procedure for the estimation of the channel matrix involves  the exchange 

of pilot signals– i. e., reference signals known both by the transmitter and receiver:  the 

transmitter sends a 𝑁𝑁𝑝𝑝-length sequence of reference signals 𝒑𝒑𝟏𝟏, … ,𝒑𝒑𝑵𝑵𝒑𝒑 (the pilots). 

Then, the comparison with the received signals 𝒚𝒚𝒊𝒊 = 𝑯𝑯𝒑𝒑𝒊𝒊 + 𝒏𝒏𝒊𝒊, 𝑖𝑖 = 1, … ,𝑁𝑁𝑝𝑝 furnishes 

information about the channel matrix  𝑯𝑯.  

 

One of the limitations of this procedure is the necessary knowledge of the distribution 

of the noise  𝒏𝒏: indeed, let 𝑷𝑷 = �𝒑𝒑𝟏𝟏, … ,𝒑𝒑𝑵𝑵𝒑𝒑�  ∈ ℂ𝑁𝑁𝑡𝑡×𝑁𝑁𝑝𝑝 denote the pilot matrix, having 

the pilots as columns. Then, the signals received may be collected in a matrix 𝒀𝒀 =

(𝑦𝑦1, … , 𝑦𝑦𝑁𝑁𝑝𝑝) ∈ ℂ𝑁𝑁𝑟𝑟×𝑁𝑁𝑝𝑝  given by 

 𝒀𝒀 = 𝑯𝑯𝑷𝑷 + 𝑵𝑵 (9) 

where 𝑵𝑵 = �𝒏𝒏𝟏𝟏, . . . ,𝒏𝒏𝑵𝑵𝒑𝒑�  ∈ ℂ𝑵𝑵𝒓𝒓×𝑵𝑵𝒑𝒑 is the additive noise matrix, having as columns the 

noise corresponding to each pilot. The least squares (LS) channel estimation based on 

Eq. (4) is given by 

 𝑯𝑯� 𝐿𝐿𝐿𝐿 = 𝒀𝒀𝑷𝑷†  (10) 

where 𝑷𝑷† is the generalized inverse of 𝑷𝑷. We have  𝑷𝑷† = 𝑷𝑷∗(𝑷𝑷𝑷𝑷∗)−𝟏𝟏 ∈ ℂ𝑵𝑵𝒑𝒑×𝑵𝑵𝒕𝒕, where 𝑷𝑷∗ ∈ ℂ𝑵𝑵𝒑𝒑×𝑵𝑵𝒕𝒕 is the Hermitian adjoint matrix associated to  𝑷𝑷. Notice that the existence 

of   𝑷𝑷†  assumes that  𝑷𝑷𝑷𝑷∗ ∈ ℂ𝑵𝑵𝒕𝒕×𝑵𝑵𝒕𝒕 is invertible – thus,  𝑷𝑷 has full row rank 𝑁𝑁𝑡𝑡  and 

(𝑁𝑁𝑝𝑝  ≥  𝑁𝑁𝑡𝑡).  
 𝑯𝑯� 𝐿𝐿𝐿𝐿 = 𝑯𝑯 +  𝑷𝑷†𝑵𝑵 , (11) 
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so that the result contains noise. To eliminate – or simply reduce – the effect of the 

noise, some information about its distribution is required. For instance, a minimum 

mean square error (MMSE) estimator can be devised if convenient statistics of the sig-

nals and noise are available.  

In many application scenarios, it is reasonable to assume that the additive noise has a 

complex-valued Gaussian distribution. Moreover, it is usual to assume that the noise 

statistics are known a priori. Scenarios where the additive noise is not Gaussian-distrib-

uted are little explored in the literature and the performance of MIMO symbol detectors 

is not fully understood yet.  

 

In the recent years, UQ proposed methods and tools to deal with general distributions 

of probability: for instance – as previously remarked - the approach presented in section 

3 deals with any distribution having a finite variance. The UQ approach may be em-

ployed to improve the identification of the Channel Matrix by two basic procedures, 

described and illustrated in the sequel.  

In the first one, the distribution of 𝒏𝒏 is determined as shown in section 3. Then, the 

information obtained is used to improve the estimation given in Eq. (9): denoting by 𝐸𝐸(∎) the mean, we have 

 𝐸𝐸�𝑯𝑯� 𝐿𝐿𝐿𝐿� = 𝑯𝑯 +  𝑷𝑷†𝑬𝑬(𝑵𝑵)                                                   (12) 

Thus, we may generate a sample  𝒀𝒀𝟏𝟏, …𝒀𝒀𝑵𝑵𝒔𝒔 from 𝒀𝒀 to estimate  

𝐸𝐸�𝑯𝑯� 𝐿𝐿𝐿𝐿� = 𝐸𝐸(𝒀𝒀)𝑷𝑷† ≈ � 1

Ns�𝐘𝐘𝐣𝐣Ns
𝑖𝑖=1 �𝑷𝑷†                                                (13) 

and 

𝐸𝐸(𝑁𝑁𝑖𝑖) ≈ 1𝑁𝑁𝑢𝑢��𝑪𝑪𝚽𝚽(𝑈𝑈𝑟𝑟)�𝑖𝑖𝑵𝑵𝒖𝒖
𝒓𝒓=𝟏𝟏 =  

1𝑁𝑁𝑢𝑢��𝑐𝑐𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖(𝑈𝑈𝑟𝑟)

k
𝑖𝑖=0

𝑵𝑵𝒖𝒖
𝑟𝑟=1                       (14) 

 

may be estimated using a large sample of 𝑁𝑁𝑈𝑈 variates from 𝑈𝑈. Then, we obtain 𝑯𝑯 from 

Eq. (12). 

The second approach consists in applying the UQ procedures directly to 𝒀𝒀: we may 

consider the expansion  

Y𝑖𝑖 = �𝑦𝑦𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖(𝑈𝑈)

+∞
𝑖𝑖=0 ≈�𝑦𝑦𝑖𝑖𝑖𝑖𝜑𝜑𝑖𝑖(𝑈𝑈)

k
𝑖𝑖=0                                                (15) 

Then, we may estimate 

 𝐸𝐸�𝑯𝑯�𝐿𝐿𝐿𝐿� = 𝑬𝑬(𝒀𝒀)𝑷𝑷†  (16) 

and get 𝑯𝑯 from Eq. (12). 
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As an example, let us consider the situation where the Channel Matrix has real and 

imaginary parts given in Tables 6 and 7 

Table 6. Real part 𝑯𝑯𝒓𝒓𝒓𝒓 of the test channel matrix 

0.3802     2.5303    -0.0878     0.3457    -0.7558    -0.0723     0.7731    -0.5442 

1.2968     1.9583     1.0534     0.7316    -0.5724    -0.1707     0.7844   0.2626 

-1.5972    -0.9545     0.9963     0.5140    -2.0819     0.2257    -0.6107   -0.1595 

0.6096     2.1460     1.0021    -0.2146     1.0171     0.2212     0.0547     0.7901 

0.2254     0.5129     0.4748     0.2078     0.2299    -0.6116    -0.8585    -0.7701 

-0.9247 -0.0446    -0.8538    -0.5567   -0.5338    -0.0212    -0.7874     0.0230 

-0.3066     0.5054     0.5072     0.6282     0.9689    -0.1166    -0.0048    0.3907 

0.2423    -0.1449     1.1528    -0.8111    -1.2102     0.4439     1.0837     0.7782 

 

Table 7. Imaginary part 𝑯𝑯𝒊𝒊𝒊𝒊 of the test channel matrix 

1.0919    -0.1361     1.0036     0.1525    -0.0583     0.2146     0.9578     2.0563 

0.0608     0.6283     0.2062    -0.8244    -1.3669    -0.4245    -0.7581     0.5835 

-1.0547    -0.5408     0.1399    -0.8117  -0.3104     0.3465     0.6795    0.9751 

-0.5249    -0.9916     1.1227     0.0742    -1.2690     0.5228     0.0877    -0.7482 

-0.7507    -1.0058    -0.5688     0.5107     0.5942     1.2105     1.0159   -0.3314 

1.6620     0.3452     0.4926     1.8282    -0.6279    -0.1373    -1.3866    -0.1927 

-0.4353    -0.1254     -0.5905    -0.4716     0.0708    -1.5120    -0.1398     0.7767 

0.5290    -0.1386    -0.1723     0.1325    -0.3850    -0.5937    -0.8541    -0.1965 

 

To simplify the procedure, we consider the successive identification of the columns 

of 𝑯𝑯 – there is no loss of generality, since the UQ procedures apply to the complete 

matrix 𝑯𝑯.  To perform the identification of the first column, we consider as pilot  

𝑷𝑷 = �𝒑𝒑𝟏𝟏, … ,𝒑𝒑𝑵𝑵𝒑𝒑� , 𝒑𝒑𝒊𝒊 =  �1

0

…

0

� 

Let us denote 𝑯𝑯1 the first column of 𝑯𝑯. Then,  𝒀𝒀 = 𝑯𝑯𝑷𝑷 + 𝑵𝑵 =  (𝑯𝑯𝟏𝟏 + 𝒏𝒏𝟏𝟏 … 𝑯𝑯𝟏𝟏 + 𝒏𝒏𝑵𝑵𝒑𝒑) , 

so that we obtain a noisy sample of 𝑁𝑁𝑝𝑝  variates from 𝒀𝒀𝟏𝟏 = 𝑯𝑯1 + 𝒏𝒏. Let us apply the 

first procedure defined above: we have  

𝑯𝑯𝟏𝟏 ≈ 1𝑁𝑁𝑝𝑝�𝒀𝒀𝒓𝒓𝑵𝑵𝒑𝒑
𝒓𝒓=𝟏𝟏 − 𝑬𝑬(𝑵𝑵), 

where  𝑬𝑬(𝑵𝑵) is estimated by using Eq. (14). The procedure may be iterated for all the 

columns of the matrix 𝑯𝑯, leading to the complete determination of the Channel matrix. 
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The total number of messages requested for the identification is 𝑁𝑁𝑡𝑡 × 𝑁𝑁𝑝𝑝 (𝑁𝑁𝑝𝑝 messages 

for each column) 

 

Let us consider again the same 8 × 8 −MIMO System introduced in section 3, with 

additive noise uniformly distributed in the real part of 𝑯𝑯 and Laplace distributed in the 

imaginary part of 𝑯𝑯.  We use 1000 measurements to determine the distribution of the 

noise and 𝑁𝑁𝑝𝑝 = 100. To obtain some statistics about the behavior of the proposed 

method, we realized 1000 identifications using different realizations of the noise and 

we analyzed the distributions of the errors.  In general, the first procedure furnishes a 

result with errors of about 2.5 %. Typical results are shown in Tables 8 and 9. 

Table 8. A typical result for the identification of  𝑯𝑯𝒓𝒓𝒓𝒓 : the relative error is 2.5 %. In this case, 

we used a polynomial of degree 3 (𝑘𝑘 =  3) 

0.3197 2.5331 -0.1123 0.3573 -0.7387 -0.0688 0.7639 -0.5622 

1.3180  1.9880  1.0252 0.7476 -0.5982 -0.1660 0.8447 0.2547 

-1.5747  -0.9262   0.9858    0.5271  -2.0471 0.2200 -0.6355 -0.1403 

0.6090  2.1529    1.0666  -0.2134    1.0019 0.2164  0.0477  0.7759 

 0.2145  0.4843  0.4695 0.2636  0.2107  -0.6655 -0.8945 -0.7468 

-0.9401   -0.0512   -0.8667  -0.5595 -0.5474 -0.0765 -0.7875 0.0107 

-0.2738  0.5069   0.5372  0.6183   0.9725 -0.1592 -0.0099 0.3689 

 0.2243  -0.1180   1.1575 -0.8363 -1.2034  0.4597 1.1054  0.7495 

 

Table 9. A typical result for the identification of  𝑯𝑯𝒊𝒊𝒊𝒊 : the relative error is 2.7 %. In this case, 

we used a polynomial of degree 5 (𝑘𝑘 =  5) 

1.1223  -0.1371  1.0276  0.1651  -0.0996  0.2413  0.9847  2.0552 

 0.0900 0.5813  0.2079  -0.8344  -1.4037  -0.3948  -0.8001  0.5528 

-1.0403  -0.5373  0.1504  -0.7784  -0.3145  0.3370  0.6600  1.0037 

-0.5472  -1.0040  1.1498  0.0735  -1.3057  0.4959  0.0892  -0.7480 

-0.7535  -1.0056  -0.6029  0.5181  0.5898  1.1942  1.0119  -0.2977  

1.6606  0.3181  0.4542  1.7691  -0.6316  -0.1724  -1.3636  -0.2176  

-0.4341  -0.1186  0.5958  -0.4734  0.1117  -1.5063  -0.1536  0.7360  

0.5280  -0.1820  -0.1652  0.1276  -0.3488  -0.5760  -0.8474  -0.1550  

 

Analogously to the noise, we generated statistics about the behavior of the proposed 

method:  1000 approximations using different realizations of the noise were used to 

determine the empirical CDF by the same way as preceding: a Hilbert approximation 

by a polynomial of degree 4, then the generation of a sample of 1𝑅𝑅4 variates. As in the 

study of the noise, the sample is used to determine the CDF and the PDF is found by 

particle derivation of the CDF ([11]).  

In Figure 4 below, we exhibit the PDF obtained for the relative errors in the real and 

the imaginary parts of the channel matrix. Again, both the distributions are unimodal. 

The mode for the real part is about 2.5 % and the mode for the imaginary part is about 
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3.5 %. Indeed, the statistics of the errors in the original sample of 1000 realizations are 

given in the Table 10 below 

 

  

Fig. 4.  PDF of the relative errors for the real and the imaginary parts of  𝑯𝑯 (first approach) 

Table 10. Statistics of the relative errors in the estimation of the channel matrix. These values 

correspond to about 2.5 % of error in the real part and 3.5 % in the imaginary part (first ap-

proach) 

Quantity Mean Standard Deviation 

Percent error in 𝑯𝑯𝑟𝑟𝑟𝑟 2.4666 0.2804 

Percent error in 𝑯𝑯𝑖𝑖𝑖𝑖 3.4772 0.4861 

 

Again, the errors are larger in the imaginary part, due to the difficulty introduced by 

the Laplace distribution. Here yet, improvements may be obtained by using other ap-

proaches, such as other Hilbert basis leading to more accurate approximations. 

 

  

Fig. 5.  PDF of the relative errors for the real and the imaginary parts of  𝑯𝑯 (second approach) 

Now, let us consider the second approach: as previously mentioned, the UQ proce-

dures are applied directly to 𝒀𝒀. The results are given in Tables 11,12, 13 below. We 

observe that the results are close to the preceding ones.  
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Table 11. Statistics of the errors in the estimation of the channel matrix. These values corre-

spond to about 2.5 % of error in the real part and 3.5 % in the imaginary part (second approach) 

Quantity Mean Standard Deviation 

Percent error in 𝑯𝑯𝑟𝑟𝑟𝑟 2.4632 0.2861 

Percent error in 𝑯𝑯𝑖𝑖𝑖𝑖 3.4593 0.5047 

 

Table 12. A typical result for the identification of  𝑯𝑯𝒓𝒓𝒓𝒓 : the relative error is 2.7 %. In this case, 

we used a polynomial of degree 3 (𝑘𝑘 =  3) 

0.3680 2.5028 -0.0990 0.3692 -0.7568 -0.1403 0.7332 -0.4937 

1.2847 1.9414 1.0555 0.7532 -0.6005 -0.2234 0.7769 0.2865 

-1.5988 -0.9406 0.9933 0.5163 -2.0528 0.2602 -0.6184 -0.1595 

0.5886 2.1526 1.0214 -0.2446 1.0243 0.2035 0.0250 0.7791 

0.2338 0.4664 0.4736 0.1865 0.2833 -0.6027 -0.8558 -0.7494 

-0.9310 -0.0365 -0.8368 -0.5052 -0.5354 0.0047 -0.7993 0.0442 

-0.2799 0.5414 0.5156  0.6768 0.9260 -0.1125 0.0092 0.3585 

0.2214 -0.1848 1.1550 -0.8090 -1.2271 0.4246 1.0873 0.7406 

 

Table 13. A typical result for the identification of  𝑯𝑯𝒊𝒊𝒊𝒊 : the relative error is 3.04 %. In this 

case, we used a polynomial of degree 5 (𝑘𝑘 =  5) 

1.0586 -0.1284 1.0096 0.1549 -0.0503 0.2289 0.9755 2.0566 

0.0730 0.6450 0.2133 -0.8185 -1.3692 -0.4237 -0.7618 0.6284 

-1.0485 -0.5586 0.1311 -0.8217 -0.2576 0.3661 0.6772 1.0161 

-0.5068 -0.9969 1.1592 0.0935 -1.2508 0.5323 0.0611 -0.7377 

-0.7666 -1.0275 -0.5537 0.5166 0.5941 1.2245 0.9634 -0.3507 

1.6436 0.3618 0.4758 1.8125 -0.5872 -0.1457 -1.4069 -0.1555 

-0.4201 -0.1268 0.6263 -0.5105 0.0407 -1.5517 -0.1747 0.7578 

0.4866 -0.1457 -0.1615 0.0918 -0.3937 -0.6077 -0.8930 -0.2004 

 

5 Symbol Detection 

At this stage, we obtained information about the distribution of the noise and about the 

channel matrix. The next step is the detection of symbols. Let us assume that both the 

real and imaginary parts of the symbols are chosen in an alphabet  𝒂𝒂  corresponding to 

the so-called Quadrature Amplitude Modulation (QAM) of order  𝑀𝑀 = 2𝑑𝑑:  𝒂𝒂 =

(𝑎𝑎1, … , 𝑎𝑎𝑀𝑀)  ∈ ℂ𝑀𝑀, with  

 𝑎𝑎𝑖𝑖 =  −2𝑑𝑑 + 2𝑖𝑖 − 1 ∶ 1 ≤ 𝑖𝑖 ≤ 2𝑑𝑑  . 

For  𝑑𝑑 = 1, we have  𝒂𝒂 = (−1, 1). For  𝑑𝑑 = 2, 𝒂𝒂 = (−3,−1,1,3). In the general situa-

tion: 
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 𝒂𝒂 = (−2𝑑𝑑 + 1,−2𝑑𝑑 + 3, … ,−1, 1, 3, … , 2𝑑𝑑 − 3, , 2𝑑𝑑 − 1  ) . 

Let us consider the situation where each transmitter sends a symbol: for the 

8 × 8−MIMO System introduced in section 3, the transmitters send 8 symbols and the 

receivers receive 8 values, modified by the channel matrix and the noise. The aim is to 

determine the symbols sent by the transmitters using the values detected by the receiv-

ers, the estimation of the channel matrix and our knowledge about the distribution of 

the noise. 

In the sequel, we consider two methods of detection. The first approach associates each 

symbol to a vector of length 𝑀𝑀, corresponding to lines of the  𝑀𝑀 × 𝑀𝑀  identity matrix:  

 𝒂𝒂𝒊𝒊 = (𝑠𝑠𝑖𝑖1, … , 𝑠𝑠𝑖𝑖𝑀𝑀), 𝑠𝑠𝑖𝑖𝑖𝑖 ∈ {0,1}, 𝑠𝑠𝑖𝑖𝑖𝑖 = 1, 𝑠𝑠𝑖𝑖𝑖𝑖 = 0 𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 . 
Thus, an unknown symbol 𝑎𝑎  corresponds to an unknown line of the 𝑀𝑀 × 𝑀𝑀  identity 

matrix, i. e., to a vector 𝒂𝒂 = (𝑧𝑧1, … , 𝑧𝑧𝑀𝑀), 𝑧𝑧𝑖𝑖 ∈ {0,1},   𝑧𝑧1 + ⋯+ 𝑧𝑧𝑀𝑀 = 1 . 

According to these observations, 𝑁𝑁𝑡𝑡 unknown real symbols are equivalent to 𝑁𝑁𝑡𝑡 un-

known lines of the 𝑀𝑀 × 𝑀𝑀  identity matrix, i.e., to 𝑁𝑁𝑡𝑡 unknown vectors of length  𝑀𝑀. 

Thus, we have 𝑁𝑁𝑡𝑡 × 𝑀𝑀 unknowns to be determined. These unknowns are collected into 

a 𝑁𝑁𝑡𝑡 × 𝑀𝑀 matrix  𝒁𝒁 =  �𝑧𝑧𝑖𝑖𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁𝑡𝑡 , 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀�, having as lines the vectors corre-

sponding to the unknown symbols. Analogously to Eqs. (2) – (3), we may consider 

separately the real and imaginary parts of the symbols, so that the message transmitted, 

and the data received read as 𝑯𝑯� = 𝒁𝒁�𝒂𝒂� ;   ;     𝒚𝒚� = 𝑯𝑯�𝒁𝒁�𝒂𝒂� + 𝒏𝒏� 

Each line of  𝑍̅𝑍 is a line of the 𝑀𝑀 × 𝑀𝑀  identity matrix, so that  

 ∀𝑖𝑖 ∶   𝑧𝑧𝑖̅𝑖𝑖𝑖 ∈ {0,1} , ∀ 𝑗𝑗 ;    𝑧𝑧𝑖̅𝑖1 +⋯+ 𝑧𝑧𝑖̅𝑖𝑀𝑀 = 1 . 

These restrictions are equivalent to 

 ∀𝑖𝑖 ∶   𝑧𝑧𝑖̅𝑖𝑖𝑖�1 − 𝑧𝑧𝑖̅𝑖𝑖𝑖� ≤ 0, 𝑧𝑧𝑖̅𝑖𝑖𝑖 ≥ 0, 𝑧𝑧𝑖̅𝑖𝑖𝑖 ≤ 1 , ∀ 𝑗𝑗 ;     𝑧𝑧𝑖̅𝑖1 + ⋯+ 𝑧𝑧𝑖̅𝑖𝑀𝑀 = 1 . (17) 

Let us introduce 𝓗𝓗��� = �ℋ�𝑖𝑖𝑖𝑖𝑘𝑘� given by 

 ℋ�𝑖𝑖𝑖𝑖𝑘𝑘 = 𝐻𝐻�𝑖𝑖𝑖𝑖𝑎𝑎�𝑘𝑘 . 

Then,  

(𝑯𝑯�𝒁𝒁�𝒂𝒂�)𝒊𝒊 = �𝐻𝐻�𝑖𝑖𝑖𝑖𝑍̅𝑍𝑖𝑖𝑘𝑘𝑎𝑎�𝑘𝑘𝒋𝒋,𝒌𝒌 = �ℋ�𝑖𝑖𝑖𝑖𝑘𝑘𝑍̅𝑍𝑖𝑖𝑘𝑘 𝒋𝒋,𝒌𝒌 , 

and 

 𝑯𝑯�𝒁𝒁�𝒂𝒂� = 𝓗𝓗���𝒁𝒁� 
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Notice that  𝓗𝓗��� may be transformed into a matrix ℍ�  and 𝒁𝒁� may be transformed into a 

vector ℤ� by using the correspondence  (𝑗𝑗, 𝑘𝑘) → ℓ = 𝑗𝑗 + 2(𝑘𝑘 − 1)𝑁𝑁𝑡𝑡, ℍ� 𝑖𝑖ℓ = ℋ�𝑖𝑖𝑖𝑖𝑘𝑘, ℤ�ℓ =𝑍̅𝑍𝑖𝑖𝑘𝑘. Then,  

 𝒚𝒚� = 𝓗𝓗���𝒁𝒁� + 𝒏𝒏� =  ℍ�ℤ�+ 𝒏𝒏� (18) 

Eq. (18) is analogous to Eq. (9), but restrictions (17) must be taken into account. 

Notice that Eqs. (17)-(18) may be solved for (𝒁𝒁�,𝒏𝒏�). For instance, we may use a con-

strained least squares method may be used.  We may also use algebraic equation meth-

ods: notice that  Eq.(17) is equivalent to 

 ∀𝑖𝑖 ∶   𝑧𝑧𝑖̅𝑖𝑖𝑖�1 − 𝑧𝑧𝑖̅𝑖𝑖𝑖� = 0, ∀ 𝑗𝑗 ;     𝑧𝑧𝑖̅𝑖1 + ⋯+ 𝑧𝑧𝑖̅𝑖𝑀𝑀 = 1 . (19) 

Thus, Eqs. (18)-(19) form a overdetermined nonlinear system which may be solved 

by adapted methods – eventually by a least squares approach. The number of unknowns 

is 2 𝑁𝑁𝑡𝑡𝑀𝑀 + 2𝑁𝑁𝑟𝑟, while the number of equations is 2 𝑁𝑁𝑡𝑡(𝑀𝑀 + 1) + 2𝑁𝑁𝑡𝑡. A simplified 

approach may use the approximation 

 𝒚𝒚� ≈ 𝑬𝑬(𝒚𝒚�) = 𝓗𝓗���𝒁𝒁� + 𝑬𝑬(𝒏𝒏�) =  ℍ�𝒁𝒁� + 𝑬𝑬(𝒏𝒏�)                                (20) 

Since 𝑬𝑬(𝒏𝒏�) was previously estimated, Eq. (20) may be used in combination with Eq. 

(17)  or  Eq. (19) to furnish an estimation of  𝒁𝒁� . The results may be corrected by re-

placing 𝑥𝑥𝑖𝑖  by the closest member of  𝒂𝒂 : 

 𝑥𝑥𝑖𝑖 = 𝑎𝑎𝑖𝑖(𝑖𝑖), 𝑗𝑗(𝑖𝑖) = arg min{|𝑥𝑥𝑖𝑖 − 𝑎𝑎(𝑗𝑗)|: 1 ≤ 𝑗𝑗 ≤ 𝑀𝑀}   (21) 

A second approach, more simplified yet, consists in using the equation 𝑯𝑯∗𝑬𝑬(𝒚𝒚) = 𝑯𝑯∗𝑯𝑯𝑯𝑯 + 𝑯𝑯∗𝑬𝑬(𝒏𝒏), 

we have 𝑯𝑯 = (𝑯𝑯∗𝑯𝑯)−1𝑯𝑯∗�𝑬𝑬(𝒚𝒚) − 𝑬𝑬(𝒏𝒏)� ≈ (𝑯𝑯∗𝑯𝑯)−1𝑯𝑯∗�𝒚𝒚 − 𝑬𝑬(𝒏𝒏)� .       (22) 

The estimation furnished by Eq. (22) is corrected as indicated in Eq. (21).  

Let us illustrate these approaches. Initially we consider 𝑀𝑀 = 2  (𝑄𝑄𝑄𝑄𝑀𝑀4) ,𝒂𝒂 =

 {−1,1} and the message 

 𝑯𝑯� =  (1,−1,1,−1,1,−1,1,−1,1,1,−1,−1,1,1,−1,−1)𝑡𝑡  . 
The noise is the same as in the preceding sections (uniformly distributed for the real 

part and Laplace distributed for the imaginary part). Initially, we determine the noise 

characteristics by the method exposed in section 3, using 1e4 measurements: this step 

furnishes also an estimation of  𝑬𝑬(𝒏𝒏�). Then, we identify the channel matrix as indicated 

in section 4, using 1e3 measurements. We perform 1e4 estimations of the message us-

ing a different realization of the noise each time. The performance of the methods is 

shown in the Figure 6. The first approach produced the exact result in 100 % of the 

runs, while the second one produced the exact result in 90.4 % of the runs. 
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Fig. 6. Results for 1E4 runs. The alphabet has length 2 (QAM4). Method 1 has 100 % of suc-

cess (no erroneous symbol). Method 2 finds all the exact symbols in 90.4 % of the runs.  

Now, let us consider 𝑀𝑀 = 8 (𝑄𝑄𝑄𝑄𝑀𝑀64,𝑑𝑑 = 3) ,𝒂𝒂 =  {−7,−5,−3,−1,1,3,5, 7} and 

the message (randomly generated) 𝑯𝑯� =  ( −3, 3, 3,7,1,−7,7,1,−7, 1,1,−3,5,−7,5,7 )𝑡𝑡  . 
Again, we realize 1e4 runs using distinct variates of the noise each time. The results are 

shown in the Figure 7. The first approach produced the exact result in 87 % of the runs, 

while the second one produced the exact result in 76 % of the runs. 

 

  
Fig. 7. Results for 1E4 runs, with an alphabet of length 8 (QAM64). Method 1 has no 

errors in 87 % of the runs. Method 2 in 76 %. 

 

Then, let us consider 𝑀𝑀 = 32 (𝑑𝑑 = 5) ,𝒂𝒂 =  {−31,−29, … ,−1,1, … , 29, 31} and 

the message (randomly generated) 𝑯𝑯� =  (7,1,15,11,15,−7,21,23,−19,−7,−9,3,−23,−1,−29,25 )𝑡𝑡  . 
The performance of the methods is shown in the Figure 8. The first approach produced 

the exact result in 87 % of the runs, while the second one generally fails.  
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Fig. 8. Results for 1E4 runs and an alphabet of length 32. Method 1 has 88 % of success (no er-

roneous symbol). Method 2 generally fails.  

Finally, let us consider =  {−127,−125, … ,−1,1, … , 125,129} , 𝑀𝑀 = 128 (𝑑𝑑 =

7) ,  and the message (randomly generated) 𝑯𝑯� =  ( −117,65,−1,−27,−95,33,−43,59,13,−113,75,31,47,−95,−77,77)𝑡𝑡  . 
The performance of the method proposed is shown in the Figure 9: it produced the 

exact result in 87 % of the runs. 

 

Fig. 9. Results for 1E4 runs. The alphabet has length 128 and spread is 2. Method 1 has 87.6 % 

of success (no erroneous symbol). 

The performance of the methods depends on the spread of the alphabet, id est, of the 

distance between consecutive symbols: for instance, the alphabets considered up to this 

point have a spread of 2: the difference between consecutive symbols is 2 – what is the 

actual standard in telecommunications. As a prospective analysis, let us consider =

 {−15,−11,−7,−3,1,5,9, 13} , which corresponds to 𝑀𝑀 = 8   with a spread of 4. No-

tice that the alphabet becomes asymmetric. We consider the message  

 𝑯𝑯� =  ( 9,5,13,13,−7,1,5,−3,9,−11,−15,−15,−11,1,1,−3)𝑡𝑡  . 
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This message corresponds to symbols in the same positions as in the test performed 

for the alphabet of length 8 in the preceding. The results are shown in Figure 10 below: 

we observe that the performance of both the methods increase significantly: the method 

1 has found all the correct symbols in 99.9 % of the runs.  

  

Fig. 10. Results for 1E4 runs of the method with an asymmetric alphabet spread out. The alpha-

bet has length 8, and the spread is 4 (the double of the one initially considered). Method 1 has 

99.9 % of success (no erroneous symbol) and method 1 has 97.9 % of success. 

  

Fig. 11. Results for 1E4 runs of the method. The alphabet is asymmetric, of length 32, with a 

spread of 8. Method 1 has 100 % of success (no erroneous symbol). Method 2 generally fails.  

A second example of the influence of the spread is given in Figure 11 above. We 

consider 𝑀𝑀 = 32 with an spread of 8:  𝒂𝒂 =  {−127,−119, … ,−7,1, … , 113,121}   and 

the message corresponding to symbols at the same positions as the used in the test pre-

viously presented for this alphabet: 

 𝑯𝑯� =  (25,1 ,57 , 41,57,−71,−31,81,89 ,−79,−39 ,9,−95,−7,−119,97 )𝑡𝑡  . 
The first approach produced the exact result in 100 % of the runs, while the second one 

fails.  
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It is also possible to consider symmetric alphabets with larger spread.  For instance, 𝑎𝑎 =  {−14 ,−10 ,−6,−2, 2, 6, 10, 14} is a symmetric alphabet of length 8, having a 

spread of 4.  The effects of the spread are illustrated in the Figure 12 below. 

 

  
Fig. 12. Influence of the spread: results for 1E4 runs of the method. The alphabet is symmet-

ric, of length 8. The rate of success increases for both the methods. 
 

  

Fig. 13. Influence of the redundancy: results for 1E4 runs. The alphabet is symmetric, of length 

8, spread 2. The rate of success increases with redundancy for both the methods. 

 

  

Fig. 14. Influence of the redundancy and spread: results for 1E4 runs. The alphabet is symmet-

ric, of length 32. Redundancy analysis uses a fixed spread equal to 2. Spread analysis is made 

with no redundancy (a single sending). Method 2 fails in this case 
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The quality of the detection depends also upon the redundancy of the message. For 

instance, we may consider a simple redundancy implemented by sending 𝑒𝑒 times the 

same message. The influence of 𝑒𝑒 is illustrated in the Figures 13 (above), 14 (above) 

and 15 (below). 

 

  

Fig. 15. Results for a symmetric alphabet of 128 symbols, 1E4 runs of the method. For the 

analysis of the effect of redundancy, the spread is fixed to 2. For the analysis of the effect of the 

spread, there is no redundancy (a single message without any repetition). For this alphabet, 

Method 2 fails. 

6 Concluding Remarks 

We presented an application of UQ approaches to a MIMO system. The resulting ap-

proach determines the distribution of the noise by using silent measurements. Then, it 

identifies the Channel Matrix by using pilots (id est, reference signals). Once these 

quantities were identified, the lecture of sequences of transmitted symbols is possible, 

by using identification techniques. In this work, we introduced a method of identifica-

tion based on the determination of a selection matrix formed by lines of the identity 

matrix. We established statistics of the performance of the method by realizing the 

identification of the same sequence of symbols ten thousand times and drawing up the 

histograms of the number of errors in each identification. No correcting code was used 

in the tests, which show crude results, but we examined the effects of redundancy by 

considering repeated messages. We examine also the effects of the distance between 

symbols: the larger is the spread and the larger is the number of repetitions, the smaller 

are the errors: for convenient values, the rate of error is almost null – this  is a prospec-

tive analysis, since the usual spread in telecommunications is 2. Two methods were 

considered: the faster one does not involve selection matrix but fails for alphabets using 

more than 8 symbols.  The second method uses a selection matrix and appears as more 

robust. Several variations of the parameters were considered – for instance, changes in 

the number of measurements (divided by 10), using the rough estimation 𝑬𝑬(𝒏𝒏) ≈ 𝟎𝟎, 

using different methods of optimization, …  -  and led to analogous results. The pre-

liminary results of this work may be considered as promising and encourage further 

research in the application of UQ approaches to MIMO systems. 
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